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Mathematics and its
worldwide history

Perhaps more than any other science, mathematics contains its own history, both as a field of
study and as a professional discipline. Last year the Royal Dutch Mathematical Society (KWG)
has selected the field of history of mathematics for the Brouwer Prize. During this tri-annual
event Kim Plofker of the Union College in Schenectady, USA, received the Brouwer Medal. She
is an expert in the history of science in Antiquity and in the Middle Ages, and in Sanskrit.
This article is based on the Brouwer Lecture that she delivered on 14 April 2011 during the
annual Dutch Mathematical Congress. She discusses changing aims and current priorities
in the history of mathematics, with special reference to comparisons between ‘western’ and
‘non-western’ traditions of mathematical knowledge. Among her examples she offers some
remarkable results from late-medieval Indian mathematics that illustrate the creative tension
between mathematical experiment and proof.

Mathematics as practiced in the currently
dominant tradition extending roughly from
Euclid to contemporary research has sel-
dom had to discard any of its earlier dis-
coveries to make room for later ones, as
physics has done with its theory of the
four elements or medicine with its theory of
the four humors. The arguments of earli-
er mathematicians working in this tradition
may come to seem outdated or insufficient-
ly rigorous, but are rarely rejected as actu-
ally false. (For more detailed historiograph-
ic discussions of evolution and ‘revolution’
in mathematical knowledge and methodolo-
gy, see [11, 24].) Consequently, the modern
study of mathematics retains closer links to
its own history than most other quantitative
sciences do. A specific problem may remain
open, in more or less its original formula-

tion, for hundreds of years before attaining
a definitive solution (as in the famous exam-
ples of Fermat’s Last Theorem and the Kepler
conjecture), or may still await solution after
more than a millennium (as do several con-
jectures about perfect numbers).

History as a mathematical subject
While it may be somewhat hyperbolic to claim
that mathematics as an intellectual discipline
actually contains its own history, it is undeni-
able that mathematics as a professional field
for the most part contains its own historians.
This sharply contrasts with, say, political or
economic history or history of art, most of
whose researchers have little or no formal
training or professional experience as legis-
lators or economists or artists. Even a field
like history of science, requiring in many areas

a considerable amount of specialized techni-
cal knowledge, is professionally dominated
by historians rather than by scientists. Re-
search on the history of mathematics, on the
other hand, is and has always been produced
chiefly by people trained and/or professional-
ly classified as mathematicians: simply put,
few scholars outside mathematics have the
requisite interest or technical background in
the subject matter. This is especially true
for the study of historical developments in
advanced and recent mathematics, but even
topics requiring no more than basic calculus
or pre-calculus knowledge are often shunned
by non-mathematicians. Analyses of the cul-
tural and intellectual isolation of mathemat-
ics from other subjects are still often rooted
in C.P. Snow’s ‘two cultures’ thesis [29] or Sar-
ton’s earlier articulation of the ‘essential dif-
ference’ of mathematics [28]; for a more re-
cent survey of some of the issues involved,
see [24].

History of mathematics research is thus
a body of knowledge largely created by
mathematicians for mathematicians, reflect-
ing mostly what mathematicians themselves
have seen in mathematics. The remainder of
this section sketches some of the reasons why
they have chosen to do so: namely, what are
the goals and incentives that have led math-
ematicians to adopt mathematics history for
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all practical purposes as a subfield of mathe-
matics?

The rediscovery of earlier mathematics
We may take it for granted that throughout the
existence of mathematics as a literate disci-
pline, many mathematicians have felt some
degree of curiosity about its evolution and
the origins of specific technical concepts and
conventions. But during most of the western
mathematical tradition, they did not system-
atically investigate earlier texts and record
their reconstructions of how mathematical
knowledge was shaped. (One notable ex-
ception, the classical Greek historiography
of mathematics that flourished over two mil-
lennia ago, will not be discussed in detail
here. A recent survey of classical doxograph-
ic and historical studies of science, includ-
ing much material on mathematics and refer-
encing many earlier studies, is [36].) When
they did undertake such investigations, two
motives in particular seem to have impelled
them.

The first of these concerned the ‘ap-
plied’ side (stretching the modern concept of
‘applied mathematics’ to include exact sci-
ences such as astronomy, which historical-
ly overlapped with mathematics as a disci-
plinary and professional category). Historical
sources in this category, such as mathemati-
cal astronomy texts, were sometimes associ-
ated with useful records of observational da-
ta. For ‘pure’ mathematics researchers, on the
other hand, ancient texts might contain lost
esoteric or advanced theoretical knowledge.

A notable example of the first quest is the
examination of Babylonian mathematical as-
tronomy texts from before the common era, in
search of recorded data that might lengthen
the observational baseline over which models
in celestial mechanics might be tested. Such
efforts had begun already in classical antiq-
uity, as the work of Hipparchus and Ptole-
my shows [35, pp. 190–216]. Ancient data
is still used in some contemporary research,
e.g., [32]. The historical background of this
‘applied historical astronomy’ is discussed in
[31].

Examples of the latter kind can be seen
in the Renaissance rediscovery of classi-
cal Greek mathematics, which appeared to
many practitioners far more sophisticated
than more recent work. Understanding the
ideas of ‘the ancients’ was thus perceived as
more worthwhile than merely following in the
track of their own immediate predecessors,
‘the moderns’ — an opinion often strength-
ened by xenophobic suspicion of ‘Oriental’ in-

Figure 1 The title page of Montucla’s seminal history

fluences in post-Greek thought. For instance,
François Viète, one of the first developers
of modern symbolic notation in algebra, was
persuaded that he was merely rediscovering
and re-formatting a solution technique that
must have been familiar to ancients like Dio-
phantus but was ‘debased and polluted’ by
‘barbarians’:

“. . .The art that I bring forth is new, but
ultimately so ancient, and debased and pol-
luted by barbarians. . . But underneath that
which they extol and call the ‘great art’, Al-
gebra or Almucabala, all mathematicians rec-
ognize the unmatched gold lies hidden; how-
ever, they have hardly found it. . . The way of

seeking the truth in mathematics is one that
Plato is said to have first found, named by
Theon Analysis. . .”

(“. . .Ecce ars quam profero nova est, aut
demum ita vetusta, & à barbaris defaedata
& conspurcata. . . At sub suâ, quam predi-
cabant, & magnam artem vocabant, Algebrâ
vel Almucabalâ, incomparandum latere au-
rum omnes adgnoscebant Mathematici, inve-
niebant verò minimè. . . Est veritatis inquiren-
dae via quaedam in Mathematicis, quam Pla-
to primus invenisse dicitur, à Theone nomina-
ta Analysis. . .” [33, pp. 2–4])

While the ancient texts did not reveal all
the secrets that their editors hoped for, they
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Figure 2 The title page of Newon’s De analysi

did inspire not only new research in math-
ematics but also an abiding interest in its
chronological development.

Emergence in the eighteenth century
The history of mathematics as a subject dis-
tinct from mathematical research itself grew
out of early modern mathematicians’ efforts
to piece together the widely scattered con-
tributions to their rapidly expanding disci-
pline. Like the field of physics in the mid-
twentieth century or biology a few decades
later, mathematics in the eighteenth cen-
tury was adjusting to major breakthroughs
that substantially increased its prominence

both among the sciences and in society as a
whole.

Trying to devise classification schemes
that would systematically incorporate all the
proliferating branches of their subject and
link them to contemporary grand projects for
tracing the history of human thought as a
whole, researchers turned their attention to
the underlying structure of mathematics and
sought to explain how it had been shaped
[19, pp. 6–11]. Both the triumphalism in-
spired by technical advancement and the fo-
cus on identifying its historical genesis are
evident in what is widely considered the first
independent work on history of mathemat-

ics, Jean-Etienne Montucla’s 1758 Histoire
des mathématiques or History of Mathemat-
ics (Figure 1), whose title page proclaims that
therein

“. . . its progress from its origin to our own
day is accounted for [and] the outline and de-
velopment of the principal discoveries, the
disputes it has given rise to, and the principal
features of the lives of the most celebrated
mathematicians are explicated.” [16]

Montucla’s book and many of its succes-
sors were primarily concerned with record-
ing the technical details of the discoveries it
chronicled, and establishing who was enti-
tled to claim the credit for them — a natural
preoccupation in light of some of the bitter
priority disputes that convulsed seventeenth-
and eighteenth-century mathematics. But
as the nineteenth and twentieth centuries
brought increased professionalization to this
new field, with journals, university positions,
conferences and congresses embracing or ex-
clusively devoted to history of mathematics,
more researchers began to grapple with the
deeper challenges of being historians as well
as mathematicians [7, passim].

New discoveries and corrections
Mathematicians and mathematics teachers
accustomed to thinking of their work in
terms of rigorous deductions concerning in-
disputable objective knowledge could some-
times be over-confident in their approach to
historical inferences. The creation and sub-
sequent debunking of various mathematical
myths underlined the need for caution. Per-
haps the best-known instances of such his-
torical fallacies centered around the debate
over the origin and transmission of the ‘Ara-
bic’ or decimal place-value numerals. Al-
though a few late medieval European texts,
following statements in Arabic works, had al-
ready accurately described these ‘ten ciphers’
as borrowed by mathematicians in the Islam-
ic world from Indian sources [20], some lat-
er researchers fell victim to more speculative
hypotheses. The prolific nineteenth-century
historian of mathematics Moritz Cantor, for
example, suggested that the original versions
of the decimal place-value numerals were the
work of Greek Pythagoreans, supplemented
by a zero borrowed from Indian arithmetic
and conveyed into the Latin tradition via the
work of Boethius in the sixth century. (See [7,
p. 388; 3, pp. 231–250]. Historians of math-
ematics in the early twentieth century devot-
ed considerable effort to unravelling various
discredited speculations of this sort: [30;
2, pp. 64–68].)
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Figure 3 Newton’s arcsine and sine series in the De analysi

The potential pitfalls of historical research,
however, did not discourage most of its practi-
tioners. Moreover, descriptions of interesting
earlier developments not only satisfied his-
torical curiosity but sometimes spurred sig-
nificant new mathematical discoveries. For
instance, in the mid-eighteenth century Abra-
ham Kästner’s study of medieval and Re-
naissance arguments concerning the paral-
lel postulate sparked renewed interest in
foundations of geometry that ultimately in-
spired development of non-Euclidean geome-
tries [7, p. 113; 9, pp. 154–156]. Increased
historical knowledge and greater historio-
graphic sophistication eventually produced
a broadly based consensus about expecta-
tions for serious scholarship in history of
mathematics: researchers emphasized the
need to investigate original sources, even in
non-European languages, and take into ac-
count the historical and cultural contexts of
their composition.

One concept, two histories
The parallel evolution of mathematical knowl-
edge in separate cultural traditions compli-
cates the task of chronicling the origins of
particular concepts or techniques. Develop-
ments familiar to us under the name of a
classical or modern mathematician may have
emerged earlier in a different culture, leading
to rather anachronistic-sounding statements
like “Babylonian scribes in the second mil-
lennium BCE used the Pythagorean theorem”
or “the Fibonacci sequence appears in me-
dieval Indian combinatorics”. The principle
that mathematical knowledge is fundamen-
tally universal underneath its different lin-
guistic and methodological guises has impor-
tant consequences for the overall narrative of
its history.

The rest of this section comprises a
case study examining such consequences as
they relate to current historiographic debates
about how to define and identify the event(s)

we know as ‘the invention of calculus’: specif-
ically, the use of infinitesimal techniques to
furnish a power series expression for the sine.
Two different mathematicians in very different
historical circumstances came up with what is
indisputably the same result, which however
has highly disputable implications for situat-
ing the origins of calculus within the history
of mathematics.

Newton’s sine power series
In early modern Europe, the development of
‘new analysis’ or infinitesimal calculus meth-
ods included the discovery of infinite series
expressions for many transcendental func-
tions, whose derivatives or integrals thus
could likewise be expressed as infinite se-
ries. Among these results were the trigono-
metric power series published in 1711 in Isaac
Newton’s De analysi per aequationes numero
terminorum infinitas (‘Analysis by means of
equations with an infinite number of terms’,
Figure 2) but worked out by Newton several
decades earlier. Figure 3 shows the series
expressions for the arcsine and sine expres-
sions (titled ‘To find the lengths of curves’ and
‘Finding the base [sine] from a given length of
a curve’ respectively) as Newton wrote them.
Newton’s diagrams are facsimiles from [18,
pp. 15–17]; the simplified version in Figure 4
and the accompanying derivation are adapt-
ed from [8, pp. 5–19]. Following standard
conventions of trigonometry before the eigh-
teenth century, Newton interprets ‘sine’ as the
length of a line segment rather than as the
ratio of two lengths. In Newton’s equations
transcribed below, arcsin(x) represents the
circular arc LD (with unit radius) correspond-
ing to the sine CB in the first figure, while
x = sin(z) is the sine AB of the arc αD in the
second figure:

arcsin(x) = x +
1
6
x3 +

3
40
x5

+
5

112
x7 + · · ·

sin(z) = z − 1
6
z3 +

1
120

z5

− 1
5040

z7 +
1

362880
z9 − · · · .

The determination of the arcsine series is
more easily seen from the simpler diagram
in Figure 4, where the sine of the arc z is the
horizontal line segmentx, which with the per-
pendicular segment y and the radius 1 forms
a right triangle. An infinitesimally small ‘mo-
ment’ or increment of x is labeled dx (in a
Leibnizian notation that the modern reader
will probably find more familiar than New-
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ton’s), and the corresponding increment in
the arcz is calleddz, which can also stand for
the rectilinear hypotenuse of the infinitesimal
right triangle whose base is dx.

Since the tangent line containing the hy-
potenuse dz is perpendicular to the radius
forming the larger triangle’s hypotenuse, the
two right triangles may be considered similar
and consequently

dz
1

=
dx
y

=
dx√

1− x2
.

Newton can then rewrite the square-root term
as (1 + (−x2))−1/2 and apply his well-known
algorithm for expanding a rational power of a
binomial:

dz = dx(1 + (−x2))−1/2

=
(

1 +
1
2
x2 +

3
8
x4 +

5
16
x6 + · · ·

)
dx.

The right side is easy to integrate term by term
to give an infinite series for the desired arc-
sine z:

z = arcsin(x)

= x +
1
6
x3 +

3
40
x5 +

5
112

x7 + · · · .

To find the corresponding infinite series for
the sine, on the other hand, involves no in-
finitesimal geometry but rather an algebraic
algorithm for solving what Newton calls ‘af-
fected’ equations: i.e., polynomials involving
more than one power of the unknown. His
algorithm allows him to invert the previous
series expression and express x as a power
series in z rather than vice versa, producing
the familiar ‘Newton power series’ for the sine
[6, 18]:

x = sin(z)

= z − 1
6
z3 +

1
120

z5 − 1
5040

z7 + · · · .

Mādhava’s sine power series
Over two hundred and fifty years before New-
ton’s work, a Hindu Brāhman. a astronomer
named Mādhava in south-west India had be-
gun investigating ways to represent trigono-
metric quantities using techniques known in
traditional Sanskrit mathematics as saṅka-
lita: literally ‘summation’, meaning among
other things the computation of successive
sums, i.e., operations with series. This schol-
ar left no surviving independent texts on
his mathematical discoveries, but later gen-
erations of his followers carefully preserved
and expounded a selection of Sanskrit vers-
es containing trigonometric results attributed
to him. The rest of this section treats the ex-

planation of one such result, a rule for com-
puting the sine of a given arc, recorded by
an author named Śaṅkara who wrote near the
middle of the sixteenth century. (The exposi-
tion in these two sections is based on verses
348–436 of Śaṅkara’s commentary on Tantra-
saṅgraha 2 [26, pp. 109–117]. A fuller descrip-
tion of the reconstruction of the rationale is
given in [21] , and the base-text itself is trans-
lated in [23].See [27] for a discussion of a sim-
ilar rationale in a related text from Mādhava’s
school. The bibliographies of all the above
works cite numerous other sources relating
to these remarkable mathematical develop-
ments.)

The algorithm as Śaṅkara explains it
makes use of a trigonometric circle whose ra-
dius is larger than unity (a standard feature
in pre-modern Indian trigonometry). So in
the discussion that follows we will capitalize
the name of this quantity as the ‘Radius’ R,
and the correspondingly scaled trigonometric
function values as, e.g., Sin(x) ≡ R sin(x) for
some given arc x. Śaṅkara first states the
algorithm as follows:

“Having multiplied the arc and the results
of each [multiplication] by the square of the
arc, divide by the squares of the even [num-
bers] together with [their] roots, multiplied by
the square of the Radius, in order. Having put
down the arc and the results one below an-
other, subtract going upwards. At the end is
the Sine. . .”

This rather cryptic procedure should be
interpreted as a recursive formula using
squares of successive positive even integers
and the square of R to produce coefficients
for successive odd powers of x. The compu-
tation of the first three of these terms is as
follows, shown in modern notation:

x3

R2(22 + 2)
=

x3

R2 · 6
,

x5

R4(22 + 2)(42 + 4)
=

x5

R4 · 120
,

x7

R6(22 + 2)(42 + 4)(62 + 6)
=

x7

R6 · 5040
.

When we ‘subtract going upwards’, i.e., start-
ing with the last of these calculated terms and
ending with the given arc x itself, we obtain
to following series expression:

Sin(x) = x −
(

x3

R2 · 6
−
(

x5

R4 · 120

−
(

x7

R6 · 5040
− · · ·

)))
.

Since the circular arc x is conventional-
ly expressed in arcminutes of which there

Figure 4 Line segments and their small ‘moments’ form
‘similar’ triangles

are 21600 in the circumference, and Mādha-
va’s standard value ofR is about 3438′ or ap-
proximately equal to 21600/(2π ), it is evident
that dividing x by R essentially just converts
x to radian measure. That is, this rule for the
sine is exactly equivalent to the power series
later found by Newton:

sin(x) = x − x
3

6
+
x5

120
− x7

5040
+ · · · .

Recapitulating Mādhava’s derivation
The rationales for this rule explained by Śa-
ṅkara and other followers of the Mādhava
school are based on the notion of dividing
a quadrant into some integer number n of
equal arcs, here denoted α, whose Chord is
abbreviated to Crd(α) or Crd. We will repre-
sent Śaṅkara’s exclusively verbal exposition
symbolically by denoting the Sine and Cosine
of each successive multiple kα (k = 1 to n)
of the standard arc α by Sink ≡ Sin(kα) and
Cosk ≡ Cos(kα), respectively. His derivation
also involves Sines and Cosines of arcs ex-
tending to the midpoint of each of the equal
arcs α, that is, arcs equal to (kα + α/2) for
k = 0 to (n− 1) and denoted by the subscript
k.5:

Sink.5 ≡ Sin(kα +α/2),

Cosk.5 ≡ Cos(kα +α/2).

The differences between function values for
two successive arcs are defined as follows:

∆Sink ≡ Sink−Sink−1,∆Cosk ≡ Cosk−1−Cosk,∆Sink.5 ≡ Sink.5−Sink.5−1,∆Cosk.5 ≡ Cosk.5−1−Cosk.5 .

Figure 5 shows the quadrant divided into n
equal arcs α and some of the line segments
that represent differences between succes-
sive Sines and Cosines.

The similarity of the various right trian-
gles composed of such line segments defines
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Figure 5 Mādhava ’s quadrant divided into equal arcs α

the following relationships between these
quantities:

∆Sink.5 = Cosk ·
Crd
R
,

∆Cosk.5 = Sink ·
Crd
R
,

∆Sink+1 = Cosk.5 ·
Crd
R
,

∆Cosk+1 = Sink.5 ·
Crd
R
.

Note that up to now no arguments involv-
ing ‘infinitesimal geometry’ are employed: all
these relations involving finite quantities are
geometrically exact, with Cosines proportion-
al to differences of Sines and vice versa.

Śaṅkara’s next step is to reformulate key
expressions in terms of sums of Sine- and
Cosine-differences. For example, thekth Sine
itself is trivially just the sum of k successive
Sine-differences:

Sink = ∆Sin1 +∆Sin2 + · · · +∆Sink .

From the previous similar-triangle equations,
we derive the following expression for the dif-
ferences of the successive Sine-differences
themselves, or ‘Sine second-differences’:

∆Sink−∆Sink+1

= Cosk.5−1 ·
Crd
R
− Cosk.5 ·

Crd
R

= ∆Cosk.5 ·
Crd
R

= Sink ·
Crd2

R2 .

That is, the Sine second-difference is propor-
tional to the corresponding Sine. This allows
the desired Sine-difference to be rewritten
tautologically as

∆Sink+1 = ∆Sink−(∆Sink−∆Sink+1).

Each of the previous Sine-differences can
be rewritten in the same way, until the de-

sired Sine-difference is expressed as the first
Sine-difference minus a sum of k second-
differences or equivalent quantities, as fol-
lows:

∆Sink+1 = ∆Sink−1−(∆Sink−1−∆Sink)

− (∆Sink−∆Sink+1)

= ∆Sin1−· · · − (∆Sink−∆Sink+1)

= ∆Sin1−
k∑
j=1

(∆Sinj −∆Sinj+1)

= ∆Sin1−
k∑
j=1

Sinj ·
Crd2

R2

= ∆Sin1−
k∑
j=1

∆Cosj.5 ·
Crd
R
.

Given the above expression for each individu-
al Sine-difference, one can sum up the sums
to get an expression for the desired Sine:

Sink = ∆Sin1 +∆Sin2 + · · · +∆Sink

= ∆Sin1 +∆Sin1−
2∑
j=1

Sinj ·
Crd2

R2

+ · · · +∆Sin1−
k−1∑
j=1

Sinj ·
Crd2

R2

= k∆Sin1−
k−1∑
j=1

j∑
g=1

Sing ·
Crd2

R2

= k∆Sin1−
k−1∑
j=1

j∑
g=1

∆Cosg.5 ·
Crd
R
.

That is, each Sine is represented by its index
number k times the first Sine-difference, mi-
nus a double sum of either successive Sines
or successive Cosine-differences.

At this point, the demonstration departs
from geometric exactness by making some
simplifying assumptions about the size of the
quantities involved. These assumptions de-
pend on letting the constant arc-increment α
be very small, on the order of one arcminute.
This allows us to take α approximately equal
to its own Chord, and also to the first Sine-
difference.

Likewise, we eliminate half-subscripts by
ignoring the distinction between the end-
points and midpoints of the successive arc-
increments. Finally, we assume that the giv-
en arc whose Sine Sink is sought is approxi-
mately equal to k arcminutes, and ignore the
difference of one arcminute between k and
k− 1. These assumptions allow us to rewrite
the above expressions for Sink more concise-
ly, as follows:

R

Cos Vers

Figure 6 The Versine as a sum of Cosine-differences

Sink ≈ k−
k∑
j=1

j∑
g=1

Sing ·
1
R2

≈ k−
k∑
j=1

j∑
g=1

∆Cosg ·
1
R
.

To understand Śaṅkara’s next step, we have
to employ a trigonometric identity that would
have been obvious to him but has fallen in-
to disuse in modern trigonometry. This is
the relationship between the Cosine and the
so-called ‘versed sine’ or Versine, defined as
the difference between the Radius and the
Cosine (see Figure 6). Consequently, the cu-
mulative differences between all successive
Cosines up to the kth Cosine add up to the
kth Versine. This identity lets us transform
the above double sum of Cosine-differences
into a single sum of Versines:

Sink ≈ k−
k∑
j=1

j∑
g=1

Sing ·
1
R2

≈ k−
k∑
j=1

j∑
g=1

∆Cosg ·
1
R

≈ k−
k∑
j=1

Versj ·
1
R
.

Pausing a moment to assess the status of
this rationale — which, we recall, is sup-
posed to justify the above-mentioned ‘Mā-
dhava–Newton power series’ expression for
the sine — we may feel that not much progress
has been made. The unknown Sine is now
expressed in terms of a sum of k unknown
Versines, and we seem no closer to knowing
how to compute it. Overcoming this difficulty
will require a brief detour to infer a pattern in
expressing partial sums of powers of succes-
sive integers.
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Basic number theory formulas for, e.g., the
sum of successive positive integers from 1 to
some arbitrary k and the sum of their squares
up to k2 had been known in India for many
centuries. Śaṅkara now assumes such a k
sufficiently large to reduce all such formulas
to the same general approximate form, as fol-
lows:

k∑
j=1

j =
k(k + 1)

2
≈ k2

2
,

k∑
j=1

j2 =
k(k + 1)(2k + 1)

6
≈ 2k3

6
=
k3

3
,

...

k∑
j=1

jn ≈ kn+1

n + 1
.

Then if each such sum of powers is itself
summed, the resulting saṅkalita or sum-of-
sums expressions can be represented in the
form

k∑
j=1

j2

2
≈ k3

6
,

k∑
j=1

j3

6
≈ k4

24
,

k∑
j=1

j4

24
≈ k5

120
,

and so on.
These closed-form approximations for par-

tial sums can be substituted for sums of
trigonometric functions by making further
simplifying assumptions. In the equation for
the desired Sine, Śaṅkara considers each suc-
cessive Sine Sing approximately equal to its
corresponding arc, namely g arcminutes:

Sink ≈ k−
k∑
j=1

Versj ·
1
R

≈ k−
k∑
j=1

j∑
g=1

Sing ·
1
R2

≈ k−
k∑
j=1

j∑
g=1

g · 1
R2 .

Now by using the above general form for sums
of sums of powers of integers, we can convert
this equation to

Sink ≈ k−
k∑
j=1

j∑
g=1

g · 1
R2

≈ k−
k∑
j=1

j2

2
· 1
R2

≈ k− k3

6R2 .

This is the key step in arriving at the desired
power series. Since the Sine and Versine are

each defined in terms of a sum of the oth-
er, these saṅkalita terms can be recursively
substituted for sums of trigonometric function
values indefinitely. For instance, the previ-
ous approximation for the Sine allows us to
rewrite the Versine as

Versj ≈
k∑
j=1

(
j − j3

6R2

)
· 1
R

≈ k2

2R
− k4

24R3 .

And that expression for the Versine in turn
may be plugged back in to the formula for the
Sine:

Sink ≈ k−
k∑
j=1

(
j2

2R
− j4

24R3

)
· 1
R

≈ k− k3

6R2 +
k5

120R4 .

The same pattern of alternating substitution
between Sine and Versine terms can be ex-
tended indefinitely. And the above compu-
tation of the first few terms for the Sine in-
dicates how this pattern ultimately produces
the infinite series expression that we original-
ly undertook to justify.

Implications for the history of calculus
It is clear from comparing even these brief and
over-simplified sketches of the two discover-
ies of the sine power series that they are very
different in context and style, although there
is considerable overlap in the concepts they
use. Newton in the mid-seventeenth centu-
ry was interested in finding the most general
methods possible to perform quadratures of
diverse curves using simple polynomial inte-
gration techniques. The power series for the
sine (along with the one for the arcsine) was
essentially a by-product of this quest for gen-
eral solutions in the De analysi.

Mādhava around the turn of the fifteenth
century, as noted above, did not pass down
to the present day any text describing in de-
tail the context of his work on infinite series
for trigonometric functions, though it seems
reasonable to assume that his successors fol-
lowed his lead in the way they presented it.
What is evident is that Mādhava saw this work
as dealing specifically with the computation
of Sines and arcs. The proportion linking
Sines and Cosine-differences was not a par-
ticular application of a general concept like
fluxions or derivatives to a function that hap-
pened to be trigonometric. Likewise, the re-
lationship between positive integer powers of

successive integers and their sums was not an
instance of a general integration power law or
a tool for quadrature of arbitrary curves. Still
less did these ideas form part of any investi-
gation of series composed from higher deriva-
tives of arbitrary functions, as in the mod-
ern Taylor series. This is further confirmed
by later derivations, apparently due to Śaṅka-
ra himself, that employ related techniques to
infer a different sine power series that is in
some ways inconsistent with the Mādhava–
Newton one [22]. Rather, these algorithms in
the work of Mādhava’s school remained fun-
damentally embedded in the trigonometry of
Sines and their associated Chords, Cosines
and Versines.

However, the similarities in the results
found by Mādhava and Newton, and also in
the basic structure of some of the tools they
used (geometric approximations based on in-
finitesimally small increments, recursive sub-
stitutions for terms of series, and so forth),
are significant enough to warrant questioning
some of our default classifications of histor-
ical developments in mathematics. Mathe-
maticians and historians of mathematics gen-
erally take it for granted that ‘calculus’ refers
to the infinitesimal analysis of derivatives
and integrals that took shape in seventeenth-
century Europe, most significantly in the work
of Newton and Leibniz. If that is what ‘calcu-
lus’ means, then of course Mādhava cannot
be assigned priority in discovering it. But if
‘calculus’ is used to connote a broader con-
stellation of concepts involved in those dis-
coveries, then it seems undeniable that Mā-
dhava and his followers were in some sense
doing calculus too. A strong version of the lat-
ter perspective appears in many discussions
of the Mādhava school, e.g., in a foreword
to a recent translation of one of its seminal
treatises asserting ‘The origin of calculus also
can be traced to this school’ [23, p. vii]. (Con-
trast a slightly earlier version of the former
perspective that opens with the equally blunt
assertion ‘Calculus was not invented in India’
[1, p. 131].) A more extreme approach argues
for the possibility that the discoveries of the
Mādhava school actually exerted crucial influ-
ence on early modern European calculus via
transmission during the colonial period; e.g.,
[14, pp. 178–204].

Such unexpected overlaps between his-
torically distinct mathematical traditions are
valuable in correcting the automatic tenden-
cy of historians to essentialize certain devel-
opments or methodologies primarily because
they happen to be familiar. Mādhava will
probably not replace Newton and Leibniz in
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most future histories of mathematics as the
iconic ‘inventor of calculus’; but the fact that
such a replacement might even be considered
possible should provoke some salutary ques-
tioning about what exactly we mean when we
speak of ‘inventing calculus’.

The history of mathematics now
The discipline of history of mathematics at
present is expanding in terms of both its his-
torical content and its professional role.

The acknowledged subject matter of his-
tory of mathematics now extends from the
earliest identifiable records of human quan-
titative thought up to the achievements of
mathematicians still living and working to-
day. In particular, it is generally considered to
embrace not only literate mathematical tradi-
tions from every place and time in the world’s
history but also many quasi-mathematical
cultural features such as ornamentation pat-
terns and game strategies, often classified
under the name ‘ethnomathematics’. More
and more archival sources, linguistic tradi-
tions and scientific instruments are being ex-
amined for the evidence they may yield about
contemporary mathematical developments.
Texts in related sciences such as astrono-
my and physics (and related pseudo-sciences
such as astrology) are read side by side with
‘pure’ mathematical ones in the effort to un-
derstand the mathematics of earlier periods
as contemporary teachers and students saw
it.

Professionally, growing numbers of math-
ematicians read and publish research in his-
tory of mathematics, and growing numbers of
secondary schools, colleges and universities
include it in their curricula. Readers, teachers
and researchers are increasingly attentive to
the interdisciplinary requirements of the field.
Its practice now has to incorporate research
skills in history and languages as well as ana-
lyzing the technical content of the mathemat-
ics and related subjects it investigates.

Focal points in current history of mathematics
Although research in history of mathemat-
ics nowadays involves an immense variety of
subjects, sources and methodologies, there
are certain common themes that unite many
of them in general trends. Perhaps the most
important of these is the issue of what is
sometimes called ‘external history’, or con-
textualizing technical knowledge within a par-
ticular historical and cultural setting. Modern
mathematical notations and classifications,
although they are useful tools for interpreting
earlier writings, cannot be automatically ac-

cepted as reliable equivalents for them; nor
can technical treatises really be understood
in linguistic or cultural isolation from their
counterparts in other fields. Two scholars of
the oldest known literate mathematical tradi-
tions have well described the recent shift in
approaches to reading ancient mathematical
texts: (see also the discussions of ancient
source interpretation in [12]):

“The study of Egyptian mathematics is
as fascinating as it can be frustrating. The
preserved sources are enough to give us
glimpses of a mathematical system that is
both similar to some of our school mathe-
matics, and yet in some respects complete-
ly different. It is partly this similarity that
caused early scholars to interpret Egyptian
mathematical texts as a lower level of Western
mathematics and, subsequently, to ‘trans-
late’ or rather transform the ancient text into
a modern equivalent. This approach has now
been widely recognized as unhistorical and
mostly an obstacle to deeper insights. Cur-
rent research attempts to follow a path that
is sounder historically and methodological-
ly. Furthermore, writers of new works can rely
on progress that has been made in Egyptolo-
gy (helping us understand the language and
context of our texts) as well as in the history
of mathematics.” [13, p. 7]

“It is tempting to think that, because it all
happened such a long time ago, there is lit-
tle new to say about mathematical develop-
ments in ancient Mesopotamia (southern Iraq
and neighbouring areas). The standard histo-
ries of mathematics all tell much the same
story. . . [F]amously the young Otto Neuge-
bauer began his program of decipherment
and publication in the late 1920s. . . Neuge-
bauer’s interpretative paradigm remained
paramount: analysis in mathematical terms
only, highlighting features such as the use of
the Pythagorean theorem that could be taken
as an index of Babylonian progression toward
modernity. Questions of authorship, context,
and function were systematically overlooked;
textuality and materiality played no part in
the academic discourse of the mid-twentieth
century. . . Mathematics is not created out of
nothing — it is written by individuals oper-
ating within the social and intellectual norms
and conventions of the societies in which they
dwell. Thus coming to grips with another cul-
ture’s mathematics is not simply a matter of
translating one notation into another. Instead
we need to explore the personal, intellectual
and social circumstances under which it was
written.” [25, pp. 58–62]

A related trend is the growing emphasis
among scholars on the importance of origi-
nal source materials in historical research and
the need for better access to them. Archives
of publications by individual mathematicians
and scientific academies are appearing at ev-
ery level from nationally funded institutions to
editions of collected works to small textbase
projects maintained by individuals. Improved
digital availability is rapidly accelerating the
dissemination of historical sources, assisted
by a steady stream of new translations pro-
duced by both researchers and students.

For example, the Euler Archive (www.eu-
lerarchive.org) is a pioneering online archive
collecting not only facsimile publications
but new translations and bibliographies of
Euler’s work, as well as other informa-
tion about him. The Galileo Portal (por-
talegalileo.museogalileo.it) is an instance of
a similarly structured but more ambitious
repository based at the Florence Institute and
Museum of the History of Science. A smaller-
scale version of such an archive devoted to
the mathematician Johann Lambert is being
developed at www.kuttaka.org/JHL/Main.html.
The various mathematical bibliographies and
textbases available are too numerous to
list; a sketch of relevant electronic re-
sources, now nearly ten years old but still
informative about several active projects,
is [7, pp. 337–338].

These developments accompany, and in
many cases are inspired by, the continued
symbiosis between mathematics history and
mathematics pedagogy: instructors and stu-
dents alike are seeking source materials,
research topics, presentation opportunities,
and above all more sophisticated and de-
tailed answers to historical questions than
are found in long-established standard text-
books, whose surveys are often decades
out of date in certain areas. The difficul-
ty of finding accessible and accurate sec-
ondary sources on many historical topics has
strengthened support for ‘do-it-yourself’ re-
search on historical sources for both teachers
and students. For example, a Special Inter-
est Group of the Mathematical Association of
America currently directs an annual student
writing contest in the history of mathemat-
ics (www.homsigmaa.org); there are also var-
ious workshops and technical guides aimed
at novices to the study of original sources, no-
tably [34].

Finally, at the specialist research level,
common ground is beginning to be negotiat-
ed on what might be called the historiogra-
phy of ‘world mathematics’. As discussed in
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the previous sections, the theoretical ideal of
mathematics as universal knowledge, collid-
ing with the varied ways that different cultures
have defined and pursued it, can lead to con-
fusion or controversy about how to identify
and attribute discoveries (and re-discoveries)
of important results. Researchers in di-
verse subfields are attempting to establish
new demarcation lines (or in some cases to
eradicate old ones) defining different linguis-
tic/cultural traditions, time periods, and more
abstract concepts like ‘proof’ or ‘exact sci-
ences’. Thoughtful discussion is steadily sup-
planting the exaggerated inferences and mu-
tual suspicions of cultural chauvinism that
had sometimes hampered communication on
such questions. Two such discussions treat-
ing the notion of proof in Indian mathemat-
ics are [17] and [27, Vol. I, pp. 267–310]. A
similar exploration of proof modalities in Chi-
nese mathematics is [5]; a collection of cross-
cultural assessments of these issues will ap-
pear shortly [4].

Probable directions for the future
Astrology is no longer considered a subfield of
mathematics, and consequently we do not ex-

pect mathematicians to show any more skill
than the average when it comes to predict-
ing the future. Yet it seems appropriate to
close a wide-ranging survey of this sort by of-
fering at least some tentative indications of
what is likely to happen next in the history
of mathematics, in addition to the continu-
ance of the current general trends mentioned
above. One of the most promising new av-
enues of research appears to be the investi-
gation of mathematical corpora in cultural or
linguistic minority populations, which tend to
be overshadowed by the dominance of Latin,
French, German, Italian and English among
the Western languages, and Arabic, Chinese
and (to a lesser extent) Sanskrit within Asia.
Under-studied but potentially very rich fields
include South Asian vernacular mathematics
in the second millennium, Dutch mathemati-
cal sciences in the early modern period, and
eastern European mathematics in the twenti-
eth century.

History of mathematics will probably take
a more prominent part in popular percep-
tions of mathematics, both in and outside
classrooms. Several dramatic works in re-
cent years have highlighted the significance

of mathematics in the life of the mind, as
have new outreach efforts to encourage pub-
lic interest in mathematics. The creation of
the New York Museum of Mathematics (mo-
math.org, opening in 2012) is a striking exam-
ple of this growing attention to public aware-
ness of mathematics. The role of history in
all such programs of math popularization is
likely to be crucial.

Without doubt, though, its greatest impact
will continue to be felt in mathematics teach-
ing. In fact, the chief danger now for math-
ematics and history of mathematics alike is
not that the latter will be neglected by the for-
mer, but that it may be overloaded with ped-
agogical expectations to achieve what math-
ematics itself has not: namely, providing an
easy solution to the challenges of teaching
mathematical thinking to students for whom
technology has largely replaced basic mathe-
matical competence. Nonetheless, although
the integration of mathematics with human-
ities and social sciences that the history of
mathematics offers cannot eliminate all diffi-
culty from learning or teaching mathematics,
it remains an invaluable reminder of the im-
portance of overcoming that difficulty. k
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