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Bounding solutions for
cerebral aneurysms

Cerebral aneurysms are weak spots in the vessel structure of the brain, which present a serious
problem to the patient. Julia Mikhal and Bernard Geurts present the application of an Immersed
Boundary (IB) method to the simulation of blood flow through such aneurysms. The goal is to
understand the flow in these diseased parts of the human brain system and to assess the risk
of rupture. The IB method is applied to a generic model aneurysm for which the authors study
the flow and forces on the vessel wall at a variety of physiological conditions. The definition
of complex aneurysm geometries is hampered by uncertainties associated with the available
spatial resolution of medical images. With the IB method one may readily approximate flow dy-
namics for the ‘most likely’ reference vessel shape as well as for ‘nearby’ bounding geometries.
The latter approximations are respectively ‘inner’ or ‘outer’ with respect to the likely reference
geometry. Several important characteristics of the flow inside the reference geometry appear
to be bounded by the solutions corresponding to the inner and outer geometries. Although
no strict mathematical bounding property has been established, numerical experimentation
shows the practical bounding property of inner and outer simulations. The authors illustrate
their numerical method on the selected ‘model aneurysm’ and show the sensitivity of the solu-
tion to inherent variations in the definition of the flow domain and flow conditions. Julia Mikhal
was the winner of the Philips Wiskundeprijs voor Promovendi 2011.

Cerebral aneurysms may form and gradually
develop on blood vessels in a human brain.
The main risk area is the so-called ‘circle of
Willis’ — the primary net of vessels through
which blood is delivered to the brain. The
most common locations for aneurysms to ap-
pear are near bifurcations of vessels [1]. Over
time the vessel wall may be weakened and ad-
ditional cavities may form, stimulated by the

ongoing pulsatility of blood flow. There are
two principal methods of treatment: (i) surgi-
cal clipping near the ‘neck’ of the aneurysm,
and (ii) filling the aneurysm cavity with a
coiled metal wire. A main challenge is to bal-
ance the developing risk of aneurysm rupture
with the risk of complications due to the sur-
gical intervention. The coiling procedure is
less intrusive and less risky than the clipping

approach, although also during insertion of
a coil considerable additional forces act on
the aneurysm wall that may provoke rupture
[7]. Understanding and quantifying the risk
of rupture may help with the planning of sur-
gical intervention: in some cases it is better
not to start surgery in view of these additional
complications. Computational modeling can
be an important support in the treatment — in
this paper we sketch the use of an immersed
boundary method to obtain flow and forces
from a computer simulation, and consequent-
ly arrive at a basic ingredient for future risk
modeling.

These days, the diagnostics of cerebral
aneurysms is based on a rotational angiogra-
phy procedure during which 2d and 3d im-
ages of the often complex vessel structure
are determined [3, 9]. Based on impres-
sions of, e.g., size, shape and location of
possible aneurysms, medical decisions are
made regarding further treatment. Consider-
able heuristics and a large volume of circum-
stantial knowledge is implicitly embedded in
such decision processes. Through numerical
simulation of flow patterns inside actual ves-
sel structures one may augment the current
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mode of operation by patient-specific predic-
tion of forces on the aneurysm walls. In this
paper we illustrate how an immersed bound-
ary method can be used, not only to predict
the flow dynamics, but also to provide an
impression of upper and lower bounds for a
range of key flow properties. This can be used
to quantify the sensitivity of the predictions to
input uncertainties, but also suggests savings
in the computational effort by bounding flow
properties with inner and outer predictions
obtained at rather coarse spatial resolutions.

The flow of blood is modeled by approxi-
mating it as a Newtonian fluid, i.e., governed
by the incompressible Navier–Stokes equa-
tions. The dynamic consequences of non-
Newtonian corrections were found to be quite
small [2, 5, 10]. The flow is predicted on the
basis of an immersed boundary method [8].
Basic to this approach is the so-called binary
‘masking function’H with which the complex
geometries of (diseased) human blood ves-
sels is represented. In fact, we specify the
geometry by identifying which locations are
inside a solid part (H = 1) of the domain and
which are in a fluid part (H = 0). The pattern
of 0’s and 1’s on a given spatial grid provides
a ‘staircase’ approximation of the vessel ge-
ometry, and allows to numerically simulate
the flow, consistent with the impenetrability
of the solid brain tissue. The use of a masking
function yields a fast and simple definition
of patient-specific geometries that were ob-
tained from an angiography procedure. More-
over, slight uncertainty in the precise location
of the boundary between the solid (H = 1)
and the fluid (H = 0) part of a recorded an-
giography can be accommodated for. In the
sequel, we will sketch the numerical method,
present the prediction of flow and forces in
a model aneurysm and describe the use of
inner and outer masking functions to provide
practical bounds for various flow characteris-
tics.

Immersed Boundary method
We simulate the flow of blood inside the
human brain by solving the incompressible
Navier–Stokes equations:

∂u
∂t

+ u · ∇u = −∇p +
1

Re
∇2u + f ,

∇ · u = 0,

with u = at ∂Ωf .
(1)

(2)

(3)0

Here u is the velocity of the fluid in the flow
domainΩf , p is the pressure and Re = UL/ν
is the Reynolds number, in terms of a refer-

ence velocity (U), a reference length scale (L)
and the kinematic viscosity (ν). In this paper
the length scale is of the order of the diameter
of a vessel connecting to an aneurysm, while
the reference velocity is of the order of the
bulk velocity derived from the mass flow rate
Q and the cross-sectional area of a vessel A,
i.e., U = Q/A.

The non-dimensional parameter Re is in-
terpreted here as a measure for the speed of
the blood flow, assuming the viscosity and
the length scale parameter to be fixed. To
appreciate the flow regime, e.g., laminar or
turbulent flow, it is important to estimate the
value of Re. In the circle of Willis a typical
diameter of a vessel is D ≈ 0.42 ± 0.09 cm
[6]. The kinematic viscosity is on the order
of ν ≈ 3.5 · 10−6 m2/s [12]. Finally, a typical
mass flow rateQ ≈ 245 ml/min [4], which im-
plies a velocityU ≈ 0.3 m/s. These numbers
lead to a Reynolds number Re ≈ 350. Since
the Reynolds number can vary considerably
from person to person, depending on a num-
ber of aspects such as the level of activity at
a given time, the precise vasculature that is
present or the actual viscosity of the blood,
we will consider the physiologically relevant
range Re = 100–500 in the computations.
This corresponds to a laminar, possibly un-
steady flow regime. We discretize the sys-
tem of Navier–Stokes equations by adopting
a symmetry-preserving finite volume method
in combination with a time-stepping method
of Adams–Bashforth type [13].

The forcing term f on the right hand side of
the Navier–Stokes equations is used to rep-
resent the condition that brain tissue can not
be penetrated by the flow. This condition can
be represented in various ways. In the cur-
rent immersed boundary approach we adopt
a volume penalization that depends linearly
on the flow velocity u. In particular, we select
the forcing in the following way:

f = −1
ε
H(x)u.

HereH is the so-called masking function and
the ‘relaxation time’ ε � 1. The masking
function H is a binary function that takes the
value ‘0’ if x is in the fluid-filled part of the
physical domain and the value ‘1’ for all x in
the solid part (see Figure 1). The linear forcing
term induces a very strong restoring influence
on any non-zero flow inside the solid brain
tissue. This results in negligible velocities
where H = 1; we adopt ε = 10−10 and ob-
served maximal residual velocity values in the
solid on the order of

√
ε. Hence, the volume

Figure 1 Sketch of the masking function in 2D. The fluid
cells (dark) are assigned according to the domain property
in the centre of the grid cell — if the centeris found to
be solid (fluid) then the entire cell is assigned to be solid
(fluid).

penalization is effective in retaining the in-
compressible Navier–Stokes equations with-
in the flow part of the physical domain, while
yielding effectively zero velocity within the
solid part.

Within our IB method we work on a 3d
Cartesian grid, which simplifies computa-
tions, but also makes the treatment of arbi-
trary complex geometries a challenging prob-
lem. In general, a complex shape will not be
aligned with the regular Cartesian grid, and
some approximations need to be made. Turn-
ing this challenging aspect into a ‘virtue’ of
the method, we developed three closely re-
lated masking function techniques, which al-
lows not only to predict the numerical solution
but also its sensitivity to small uncertainties
in the geometry definition. The three masking
strategies are referred to as ‘inner’, ‘middle’
and ‘outer’; these differ in the way a value
of H is assigned to a grid cell. In the ‘mid-
dle’ strategy we call a grid cell solid (fluid) if
the centre of the cell is solid (fluid). For the
‘inner’ strategy we are more strict and call a
grid cell part of the fluid domain if all eight
corner points of that cell are in the fluid part.
Similarly, in the ‘outer’ strategy a grid cell is
assigned to be part of the fluid domain if at
least two of the eight corner points of the grid
cell are in the fluid part. Correspondingly,
the flow domain associated with the ‘inner’
(‘outer’) strategy will be smaller (larger) than
that corresponding to the ‘middle’ strategy, a
property that is basic to deriving practical nu-
merical bounding solutions, as will be shown
in the sequel. We validated these strate-
gies for the classical case of Poiseuille flow
through a cylindrical pipe and obtained first
order convergence for a basic discretization
method (see Figure 2). This illustrates the



3 3

3 3

Julia Mikhal, Bernard Geurts Bounding solutions for cerebral aneurysms NAW 5/12 nr. 3 september 2011 165

101 102

10−3

10−2

N

L
2

Figure 2 Convergence of the error computed in the L2 norm for inner (dash), outer (dash-
dot) and middle (solid) masking strategies, applied to Poiseuille flow in a cylindrical pipe.
The validation analysis includes several grid resolutions. For convenience a slope of -1 is in-
cluded (dot) to help appreciate the first order convergence at high resolutions.
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Figure 3 The velocity profiles for inner (dash) and outer (dash-dot) masking functions
bound the middle profile (solid). The grid resolution is 64 × 64 over the cross section of
the cylinder.

consequence of non-alignment of the fluid-
solid interface with the Cartesian grid. Next
to the numerical convergence of our method
we notice that several aspects of the ‘mid-
dle solution’ are nicely bounded by the so-
lutions obtained with the ‘inner’ and ‘outer’
masking strategies. In Figure 3 the parabolic
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Figure 4 Snapshot of the developing flow inside a curved vessel (a) and a model aneurysm (b) at Re = 100. The flow is visualized in a cross-section through the geometry, by plotting the in-plane

velocity vectors.

Poiseuille profile obtained for the middle so-
lution is bounded from above and below by
the inner and outer solutions.

The three definitions of the masking func-
tion can be used to investigate the sensi-
tivity of flow predictions to the quality with
which the geometry is known. From medical

imagery the geometry of blood vessels is
available with a certain limited spatial res-
olution — pivoting about what we be-
lieve to be the more probable approxima-
tion of the shape of the aneurysm, can
give a confidence level to the numeri-
cal findings. The inner and outer strate-
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Figure 5 Snapshot of the shear stress distribution in a 2D cross section through the middle of the model aneurysm. Simula-
tions are done for a pulsatile flow at Re = 500. Dark areas correspond to high shear stress values.

gies can provide such practical bounds, which
can be used for better understanding of the
natural uncertainties.

Shear stress and forces on vessel walls
Analysing images of real aneurysms from
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Figure 6 The maximum shear stress inside the model aneurysm for pulsatile flow forced by a sinusoidal (a) and a realistic cardiac (b) mass-flow forcing. The flow was simulated at different

physiologically relevant Reynolds numbers: Re = 100 (dash), Re = 250 (dash-dot) and Re = 500 (solid). At lower Reynolds numbers the selected pulsatile profile is clearly visible in the shear

stress response, while for higher Reynolds numbers the nonlinearity of the flow is dominant and the response becomes largely independent of the forcing profile.

patient data motivates to first develop the
IB method on the basis of characteristic
‘building-block’ shapes for connecting ves-
sels and aneurysm bulges. We selected a
model curved vessel formed by a cylindrical
tube with a sinusoidal centre-line. By adding
a

spherical cavity to this curved vessel we arrive
at the definition of a model aneurysm.

An impression of the flow through these
two models is shown in Figure 4. We ob-
serve a well-defined flow through the curved
vessel, which becomes more complex by the
presence of vortex shedding in the aneurysm
cavity. Although there is a direct interest in
the evolution of the actual flow, an assess-
ment of the possible ‘risk of rupture’ of such
a flow configuration requires also knowledge
of the forces that act on the walls. To quantify
these, it is common practice in fluid mechan-
ics to determine the so-called shear stress τ,
which is a measure for the gradient of the ve-
locity field in the flow domain [11]. Defining
the rate-of-strain tensor S = (∇u +(∇u)T )/2 in
terms of the velocity gradient∇u we compute

τ =
1

Re

√
2S : S

The shear stress helps us to analyse the shear
forces in the whole computational domain. To
isolate normal stresses from pure shearing
motion we base τ on the off-diagonal com-
ponents of S. A 2d impression of the shear
stress distribution taken in a slice through the
middle of the model aneurysm can be found
in Figure 5. We show contours of τ at a char-
acteristic moment during the time-dependent
flow — dark areas correspond to high shear
stress, which are mostly located along the
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Figure 7 Pressure drop in the streamwise direction over the model aneurysm for in-
ner (dash), middle (solid) and outer (dash-dot) solutions at a coarse grid resolution
32 × 16 × 32 , and the middle (dot) solution obtained at a higher grid resolution
64× 32× 64. Simulations are done at Re = 500.
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Figure 8 Time-averaged maximum shear stress over the model aneurysm for inner (dash),
middle (solid) and outer (dash-dot) solutions at a coarse grid resolution 32×16×32 , and
the middle (dot) solution obtained at a higher grid resolution 64 × 32 × 64. Simulations
are done at Re = 500.

walls, near the neck of the aneurysm and as-
sociated with localized swirling motion (vor-
tices) inside the aneurysm.

A focus of interest is the effect of pulsatile
flow on the shear stresses inside the mod-
el aneurysm. For this purpose we force the
flow by a time-periodic pressure drop across
the streamwise direction, such that a time-
dependent mass flow arises. We consider two
types of pulsatile signals: a simple sinusoidal
signal and a signal approximating a realistic
cardiac cycle. We compute the maximum of
the shear stress over the flow domain as a
function of time.

In Figure 6 we present the computational
results at three flow conditions in the physi-
ologically relevant regime, i.e., at Re = 100,
Re = 250 and Re = 500. At lower Reynolds
numbers, i.e., at comparably slow flow in case
we consider the domain size and the viscos-
ity of blood fixed, the pulsatile forcing pro-
file is clearly visible in the time-dependent re-
sponse. At higher Reynolds numbers the non-
linearity of the Navier–Stokes equations is
dominant over the precise forcing effects and
the response is largely independent of the se-
lected mass-flow profile. In addition, we ob-
serve a considerable growth in the maximal
shear stress levels, with increasing flow ve-
locity. The combination of a strongly fluctuat-
ing stress level, with considerably increased
amplitude corresponds intuitively with an in-

crease in the risk of rupture at higher Re — cur-
rent research is dedicated to capturing these
trends in a quantitative risk model.

Inner/outer bounding solutions
In this section we illustrate the practical
bounding solutions obtained on the basis
of the ‘inner’ and ‘outer’ masking functions.
We concentrate on analysing the pressure
drop over and the stress level in the mod-
el aneurysm. In order to maintain a pre-
scribed mass-flow through the computation-
al domain a time-dependent pressure differ-
ence needs to be provided. In Figure 7 we
present this pressure drop as obtained for the
three masking strategies. We also present the
time-averaged maximum shear stress in Fig-
ure 8. The numerical results show the prac-
tical bounding property associated with the
inner and outer masking functions, relative
to the findings based on the ‘most probable’
middle masking function. At coarse grids, the
predictions obtained with ‘nearby’ masking
functions can be qualitatively different, em-
phasizing the need to quantify the sensitiv-
ity of any flow prediction to changes in the
aneurysm geometry. Even at the coarse spa-
tial resolutions that were adopted in these il-
lustrations, we notice that the pressure drop
and shear stress measure found with the mid-
dle masking function are bounded from below
and above by the inner and outer results at

the same grid resolution. When increasing
the spatial resolution, the practical bounding
property is maintained and the band-width
within which the predictions are likely to fall
decreases.

In Figures 7 and 8 we also included predic-
tions obtained at higher resolutions. These
suggest a possible further usage of the prac-
tical bounding idea: instead of one expen-
sive computation at high resolution for the
‘middle’ geometry we can provide bounding
predictions at considerably lower grid resolu-
tions. In some cases such coarse bounding
of a certain flow property may be adequate,
thereby avoiding the need for grid refinement.
Such an approach could bring realistic on-
line computation during surgical procedures
much closer. Since there is no strict mathe-
matical proof given for the observed bound-
ing property, the practical usage of this idea
is subject to numerical experimentation to ob-
tain confidence in the results.

Conclusions
We presented a numerical model for the
simulation of blood flow inside a cerebral
aneurysm. The risk of rupture of such
an aneurysm is connected to the time-
dependent forces acting on the wall of the
aneurysm. The long-term development of
an aneurysm constitutes an important mul-
tiscale problem where ‘expected’ develop-
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ments that take place over tens of millions of
heart beats need to be assessed on the basis
of the dominant structures in a pulsatile flow
on the scale of a second. Robustness of pre-
dictions is then of utmost importance. In this
paper we focused on the sensitivity of flow

mechanics predictions arising from uncertain-
ties in the basic medical imagery that is avail-
able. For the definition of the vessel geom-
etry we proposed to use inner/middle/outer
masking strategies, yielding instead of one
solution for a ‘most probable’ aneurysm ge-

ometry an interval of values where the fully
resolved solution is expected to lie. With the
use of the bounding solutions we can more
reliably present the results and express the
sensitivity of flow and forces to the definition
of the geometry. k
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