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Euler’s φ function, which counts the number of positive integers
relative prime to and smaller than its argument, as well as the
sum of divisors function σ , play an important role in number the-
ory and its applications. In this paper we survey various old and
new results related to the distribution of the values of these two
functions, their popular values, their champions, and the distribu-
tion of those positive integers satisfying certain equations involv-
ing such function, like the perfect numbers and the amicable num-

Leonard Euler Paul Erdős

bers. In the second part of this paper, we discuss some of the ideas
which are used in the proof of a recent result of Ford, Luca, and Pomer-
ance which says that there are infinitely many common values in the
ranges of these two functions. This settles a 50 year old question of
Erdős.

Perfect and multiperfect numbers
Let n be a positive integer. We write σ (n) for the sum of all divisors of
n, and s(n) for the sum of the proper divisors of n. So,

σ (n) =
∑
d|n
d and s(n) = σ (n)−n.

A number n is called perfect if n = s(n) and multiperfect if n | s(n).
Examples of (multi-)perfect numbers are: 6 = 1 + 2 + 3, 28 = 1 + 2 +

4 + 7 + 14, 496 = 1 + 2 + 4 + 8 + 16 + 31 + 62 + 124 + 248. Some other
multiperfect numbers: 120 (with s(n) = 240 = 2 · n) and 30240 (with
s(n) = 90720 = 3 ·n). Let P be the set of perfect numbers. Then

P = {6,28,496,8128,33550336,8589869056,137438691328, . . .}.

This is sequence A000396 in [39]. All these numbers seem to be even.
Is there a rule to generate them? The answer is yes and is given by the
following result.

Theorem 1 (Euclid, Euler). The number n is even and perfect if and
only if

n = 2k(2k+1 − 1),

where the number P = 2k+1 − 1 is prime.

Proof.
− Say P = 2k+1−1 is prime. Then Euclid observed that the sum of the
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divisors of n = 2kP is

σ (n) = 1 + 2 + · · · + 2k + P + 2P + · · · + 2kP

= (1 + P )(1 + 2 + · · · + 2k) = 2k+1P = 2n.

− Euler observed that, conversely, if n = 2kM is perfect with odd M,
then

2n = 2k+1M = σ (n) = σ (2k)σ (M) = (1 + 2 + · · · + 2k)σ (M).

This implies that P = 2k+1 − 1 is a divisor of M. Say M = PL. Then
n = 2kPL has at least the divisors

L,2L, . . . ,2kL, PL,2PL, . . . ,2kPL

already summing up to 2n, so it cannot have other divisors. Thus,
L = 1 and P is prime. �

Theorem 2 (H.W. Lenstra [17]). There are no perfect squares.

Proof (without using Theorem 1).
− If n = m2 is odd, then

σ (n) =
∑

d|m2, d<m

(
d +

m2

d

)
+m

is odd.
− If n is even and square, then n = 22km2 withm odd, so

σ (n) =
∑

d|n : d even

d +
∑
d|m2

d

is also odd by the previous argument. �

Concerning odd perfect numbers, Pomerance proved in 1973 that
every odd perfect number must have at least 7 distinct prime factors
[34]. The current record holder for this type of result is Nielsen who was
able to replace 7 by 9 in 2007 [29]. In 2001, Brent performed extensive
computations to show that any odd perfect number must exceed 10300

[5]. This was recently extended (but not yet published) to 101500 by
Ochem and Rao (see [31]). They also obtained that the largest prime
power in an odd perfect number exceeds 1062 and that the number of
prime factors, counting multiplicities, is at least 97.

Concerning the occurrence of perfect numbers in various se-
quences, in 2000 Luca [26] proved that there is no perfect number
among the Fibonacci numbers {Fn}n≥1, where F1 = F2 = 1, Fn+2 =

Fn+1 + Fn for all n = 1,2, . . .. In 2009, Pollack [33] used similar argu-
ments to show that the only perfect number which is a repdigit in base
10, i.e., whose base 10 representation is of the form

n = ddd . . . d︸ ︷︷ ︸
m times

= d
(

10m − 1
9

)
, with d ∈ {1, . . . ,9},

is n = 6. Also in 2009, Broughan et al. [6] extended the above-
mentioned result by proving that there is no Fibonacci number Fn > 1

which is multiperfect.

Numbers of the form P = 2m − 1 are called Mersenne numbers. If P
is prime, then m must be prime, but the converse is not true, since
211 − 1 = 2047 = 23 × 89. In 1953, 12 Mersenne primes — and thus
even perfect numbers — were known. Now, in 2010, 47 Mersenne
primes are known, the largest one being

243,112,609 − 1, with 12,978,189 decimal digits.

It is predicted that there are about ∼ c logx primes p ≤ x such that
2p − 1 is prime, where c = e−γ/ log 2 and γ = 0.5572 . . . is Euler’s
constant.

Theorem 3 (Luca [25]). There are no consecutive perfect numbers.

Proof. Ifm is odd perfect, thenm = p× odd square, with prime p ≡ 1

(mod 4) (Euler). Since even perfect numbers> 6 are multiples of 4, we
get that ifn andn+ 1 are perfect, thenn is even. So,n = 2p−1(2p −1)

for some prime p > 2. Thus, n ≡ 1 (mod 3), and

σ (n + 1) =
∑

d|n+1, d<
√
n+1

(
d +

n + 1
d

)
≡ 0 (mod 3),

a contradiction. �

A similar argument shows that there are no two perfect numbers
which differ by 2, or by 3, or by 4. One would like to say: and so on, but
one quickly gets stuck. At least at 22 = 28 − 6, although quite likely
much sooner. The following problem looks innocent:

Assume that the sequence P of perfect numbers is infinite and arrange
them in increasing order n1 < n2 < · · ·. Is it then true that

nk+1 −nk →∞?

In 2009, Pomerance and Luca [28] almost confirmed this condition-
ally.

Theorem 4. Assume the ABC conjecture. Then

nk+2 −nk →∞.

The ABC conjecture [30] is the following statement.

Conjecture. For all ε > 0, there exists some absolute constant Cε
such that if a and b are coprime positive integers then

a + b < Cε

 ∏
p|ab(a+b)

p

1+ε

.

The truth of the ABC conjecture implies the truth of Fermat’s Last
Theorem up to (possibly) finitely many exceptions. Luckily, this has
been proved in a different way by Wiles, and Wiles and Taylor.

Iterating s
What happens if we start with n and iterate s? Then some numbers go
to 0 after a while, like {12,16,15,9,4,3,1,0} and some numbers get
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trapped in a loop, like {220,280,220, . . .}; that is, for some n there
exist k such that if we put

n1 = n,n2 = s(n1), . . . , nk+1 = s(nk),

then nk+1 = n1. Sequences obtained by iterating s are called aliquot
sequences. Numbers which get trapped in a loop are called sociable.
Their distribution was investigated recently by Kobayashi et al. [22]. An
old conjecture of Catalan and Dickson states that all aliquot sequences
are bounded [9–10]. In 1975, Lenstra [24] proved that for every positive
integer k, there exist infinitely many positive integers n such that

n < s(1)(n) < · · · < s(k)(n).

Here is a modified question: Given k ≥ 2 and any permutation
i0, . . . , ik of {0,1, . . . , k}, do there exist positive integers n such that

s(i0)(n) < s(i1)(n) < · · · < s(ik)(n)?

Guy and Selfridge have made the counter-conjecture to that of Cata-
lan and Dickson that in fact unbounded aliquot sequences are fairly
common [20].

Loops with k = 2 are called amicable numbers [18, 32]. In 1955,
Erdős proved that amicable numbers have zero density [12]. Pomer-
ance worked on the counting function of amicable numbers [35–36].
As a byproduct of his work, he deduced that the series

P =
∑

n amicable

1
n

is finite, although it is not known whether the number of amicable
numbers is finite or infinite! In 2009, Bayless and Klyve [3] showed
that

0.0119841556 < P < 7× 108.

The lower bound follows from the known amicable pairs [32].

Euler’s totient function and related numbers
Let φ(n) be Euler’s totient function which counts the number of pos-
itive integers m ≤ n which are coprime to n. If finding n such that
n | σ (n) is hard, it turns out that finding n such thatφ(n) | n is easy!
They are all of the form n = 2a · 3b with arbitrary a ≥ 0 and b ≥ 0

except that if b > 0 then also a > 0. Observe that if n is prime,
then φ(n) = n − 1. In particular, φ(n) | n − 1. Lehmer asked the
innocent looking question whether φ(n) | n − 1 and n > 1 implies
that n is prime. One typical result is that such n should have at least
14 different prime factors (see [19, Problem B37]). Let us call a com-
posite n such that φ(n) | n − 1 a Lehmer-φ number and let L(x) be
the set of Lehmer-φ numbers ≤ x. In 1977, Pomerance [37] showed
that L(x) � x1/2(logx)4/3. The best current bound on L(x) is due to
Pomerance and Luca: L(x) ≤ x1/2(logx)−1/2+o(1) as x →∞.

Theorem 5 (Luca [27]). There is no Fibonacci number which is a Lehmer-
φ number.

In other words, ifφ(n) | n−1 andn > 1 is a Fibonacci number, then
n is prime. Can this be used as a primality test for Fibonacci numbers?
It is not known if there are infinitely many Fibonacci primes, although a

heuristic similar to the heuristic for the Mersenne primes can be made.
By Euler’s theorem, we have that aφ(n) ≡ 1 (mod n) whenever a is

an integer coprime to n. In particular, if n is Lehmer-φ, we have that

an ≡ a (mod n) (1)

and n is composite. Composite numbers n satisfying (1) for some
fixed a are called base a-pseudoprimes. There is a large literature on
pseudoprimes. See, for example, [19, Problem A12]. In 1951, Beeger
[4] proved that there exist infinitely many even positive integers n
such that n | 2n − 2. In 1910, Carmichael [8] observed that n =

561 is a composite positive integer which satisfies an ≡ a (mod n)

for all positive integers a. Such numbers are now called Carmichael
numbers. In 1994, Alford, Granville and Pomerance [1] proved that
there are infinitely many of them.

Call m a totient if m is in the range of the Euler φ-function. There
are many interesting questions and results involving totients.

Theorem 6 (Gauss). The regular polygon with n ≥ 3 sides can be
constructed with the ruler and the compass if and only ifφ(n) = 2k for
some k > 0.

Numbers n satisfying φ(n) = 2k for some positive integer k have
a constrained multiplicative structure. They must be of the form
2ap1p2 · · ·pb, where the pi are distinct primes of the form 2mi +1 for
i = 1, . . . , b. If 2m + 1 is a prime, thenmmust be a power of 2. Fermat
thought that 22n + 1 is always prime. However, no n > 4 is known for
which 22n +1 is prime! The numbers 22n +1 are called Fermat numbers
and a lot of information about them can be found in [23]. Here are
some fun facts about Fermat numbers:
− The largest Fibonacci number whose Euler function is a power of 2

is F9 = 34.
− A Fermat number is never perfect or part of an amicable pair.

− A Fermat number is never a nontrivial binomial coefficient

(
n
k

)
for

some n ≥ 2k ≥ 4.
In 1907, Carmichael [7] thought he had a proof of the following state-

ment: For eachn, there is somem 6= n such thatφ(m) = φ(n). To this
day, this has not yet been proved, neither disproved. It is called the
Carmichael conjecture. The best partial results concerning this conjec-
ture are due to Ford. Put V(x) = #{φ(n) ≤ x}, and for any given k ≥ 1,
let Vk(x) = #{m ≤ x : #φ−1({m}) = k}. Then, Ford [14] showed that
the following hold:

− Vk(x) > 0 for all k ≥ 2 when x is large enough;
− if k is fixed and Vk(x) > 0 for some x, then

lim
x→∞

Vk(x)
V(x)

> 0;

− the Carmichael conjecture is true for all n < 101010
.

Here are some thoughts about popular totients. Can you findn such
that φ(n) = �? You will say: this is easy! Take n = 22k+1, and then
φ(n) = n/2 = 22k. So, let’s make it harder. Can you find n such that
φ(n) = � and n is squarefree? Here is a hint. Look at the following
table:

φ(2) = � φ(3) = 2×� φ(5) = �

φ(7) = 2× 3×� φ(11) = 2× 5×� φ(13) = 3×�

φ(17) = � φ(19) = 2×� φ(23) = 2× 11×�

φ(29) = 7×� φ(31) = 2× 3× 5×� φ(37) = �
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From this, it should be easy to find examples. Like

2, 5, 7× 19× 13, 3× 7× 11× 31.

Can we really find infinitely many examples in this way? Yes! Here is
why. Let x be large and p be a prime with p ≤ x. Write

φ(p) = p − 1 = ap�,

where ap is square-free. Then the largest prime factor of ap is < x/2.
Put π (y) = #{p ≤ y : p prime}. Identify ap with the vector vp in the
vector space

V = Z2 ⊕ Z2 ⊕ · · · ⊕ Z2︸ ︷︷ ︸
π (x/2) times

,

obtained by putting a 1 or a 0 in the appropriate coordinate according
to whether the corresponding prime q < x/2 divides ap or not. There
are π (x) values of vp, all living together in the Z2-vector space V of
dimension π (x/2). So, there must be at least π (x) − π (x/2) linear
combinations of them which are equal to 0. All you have to recall is
that π (x) − π (x/2) > 0. This is called the Bertrand postulate and
was proved by Chebyshev in 1850. Actually, π (x)−π (x/2) is not only
positive but actually quite large for large values of x, so we get many
n with φ(n) = �. Was this really better? Yes! Here are some reasons.
First of all, it works not only for φ(n) but also for σ (n): just replace
p−1 with p + 1 for all primes p. It also works forφ(n)σ (n). Secondly,
and most importantly, it is open to refinements. Let’s see one. An
improvement comes from considering primes p such that p − 1 does
not have a very large prime factor. Write P (m) for the maximal prime
factor of m. If y is much smaller than x/2 and we work only with
primes p such that P (p − 1) ≤ y, then vp can be regarded as an
element in the much smaller vector space

Vy = Z2 ⊕ Z2 ⊕ · · · ⊕ Z2︸ ︷︷ ︸
π (y) times

.

If we have many such primes, then in this vector space we will have
many zero linear combinations involving vp for such primes p. Hence,
many n’s withφ(n) = �.

All this can be turned around into a very specific statement that says
something like this:

If δ > 0 is such that

#{p ≤ x : P (p − 1) < xδ} > cδπ (x) (2)

for large x (cδ > 0 some constant), then

#{n ≤ x : φ(n) = �} ≥ x1−δ+o(1) as x →∞.

Erdős [11] proved in 1935 that there exists δ < 1 such that (2) holds.
It is believed that (2) holds with any δ > 0 but this has not been proved
yet.

Pomerance was the first to find a specific value for δ < 1/2 such
that (2) holds. Many people (such as R. Baker, Balog, Harman and
Friedlander, to mention only a few) worked on finding smaller and
smaller values of δ such that (2) holds. State of the art: estimate (2) is

known with δ = 1/3.3772, with corresponding 1− δ = 0.7038. Thus,

#{n ≤ x : φ(n) = �} > x0.7038. (3)

In this form it was proved in 2004 by Banks, Friedlander, Pomerance
and Shparlinski [2]. There are x1/2 squares m ≤ x. So, in a fair
world, there should be only about x1/2 values for n ≤ x such that
φ(n) = �, whereas estimate (3) tells us that there are considerably
more such values for n. Thus, squares are popular among totients!
Erdős showed in the same paper [11] in 1935 that for some δ < 1 there
are infinitely manym such that

#{n : φ(n) = m} >m1−δ.

In fact, his proof shows that we can take δ such that (2) holds. Such
values ofm are also popular. Of course, the same applies to σ .

Here is a heuristic due to Erdős concerning σ -values and amicable
numbers. Say (2) holds with all δ > 0. Put δ = ε > 0, some very small
positive number. Then for large x there is somem < x such that if we
put

A = {n ≤ x : σ (n) = m} then #A > x1−ε.

The number of solutions of the equation

n1 +n2 = m with n1, n2 ∈ A

should be x1−2ε. Each such solution leads to

n2 = m−n1 = σ (n1)−n1 = s(n1)

and vice versa, so (n1, n2) is an amicable pair. Conclusion: There
should bex1+o(1) amicable numbersn ≤ x asx →∞. (Let a(x) be the
number of amicable pairs (n1, n2),n1 < n2. This number is known for
all values of x ≤ 1014 [32]. The 4-decimal values of (loga(x))/(logx)

forx = 10j , j = 5, . . . ,14, are 0.2228, 0.2705, 0.2905, 0.2966, 0.3075,
0.3154, 0.3203, 0.3236, 0.3264, 0.3282. The data would seem to
suggest that the ratio (loga(x))/(logx) may converge somewhere close
to 1/3.)

This procedure of Erdős was tried out by te Riele in [38]. He proposed
an algorithm to solve the equation σ (n) = m recursively by finding
a divisor σ (pe) of m for some prime power pe and then solve the
equation σ (k) = m/σ (pe): n = pek then solves σ (n) = m. One
may expect the equation σ (n) = m to have many solutions if m has
many divisors, i.e., if m is smooth. If that number of solutions is
about

√
m, the number of pairs of solutions is about 1

2m, so then
there is a good chance that there are pairs of solutions which sum
up tom (provided that the solutions behave like randomly distributed
numbers). By carrying out this algorithm for many smooth numbersm,
including factorials, te Riele found more than 700 new amicable pairs.
For example, for m = 16! he found 2183888 solutions n of σ (n) = m
(with 2183888 ≈ 0.4774

√
16!), and among these there are four pairs

which sum up tom, giving four amicable pairs.

φ and σ
Starting with about 50 years ago, Erdős [13] asked whether one can
prove that the equation

φ(m) = σ (n) (4)

has infinitely many positive integer solutions (m,n). If p and p + 2 are
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both primes then

φ(p + 2) = p + 1 = σ (p). (5)

If 2p − 1 is prime, then

φ(2p+1) = 2p = σ (2p − 1).

Observe that

n! =
∏
p≤n

(p − 1)
∏
p≤n

pep = φ(m),

where m =
∏
p≤n pep+1. Maybe it is true that n! is also a value of σ

infinitely often.

Theorem 7 (Ford, Luca, Pomerance [16]). There exists a constant a > 0

such that for large x, the number of common values ofφ(n) and σ (m)

which are at most x is > exp((log logx)a).

Here are some of the things that go into the proof of Theorem 7.
There is an easy criterion for producing totients. Namely, if

∏
p|n

(p − 1) | n then n = φ(m) for somem. (6)

We start with a σ -value and use (6) to see that it is aφ-value. Let

n =
∏
p∈S

(p + 1), (7)

where S is a large set of primes p ≤ x such that P (p + 1) ≤ y, where
y = x1/2−η with some small η. The number in (7) is a product of small
primes p ≤ y each at some hopefully large power. To exploit impli-
cation (6) we need to know something about the distribution of the
primes in S modulo p ≤ y. This is governed by zeros of L-functions.
The L-functions, used by Dirichlet in his proof about primes in progres-
sions modulom are like the Riemann zeta function

ζ(s) =
∑
n≥1

1
ns
,

but twisted by some character modulo m. L-functions might have
some badly behaved zeros called Siegel zeros, which are zeros whose
real part is very close to 1. They have profound implications on the
distribution of primes in arithmetic progressions with the appropriate
modulus and most proofs try to avoid this issue. It turns out that in the
case of the proof of Theorem 7 Siegel zeros were quite helpful because
of the following result.

Theorem 8 (Heath-Brown [21]). If χ is a primitive character modulo
m and L(s, χ) = 0 for s = 1 − λ(logm)−1, then for m300 < z ≤m500,
the number of primes p ≤ z with p + 2 prime is

C
z

log2 z
+O

(
λz

log2 z

)
with

C = 2
∏
p>2

(1− (p − 1)−2) = 1.32 . . . .

So Siegel zeros imply twin primes! Thus, one could deal with the
possible existence of Siegel zeros thanks to the fact that they imply the

In this graphic the natural numbers are arranged as in the Ulam spiral and a disk of size
proportional to the number of divisors is drawn for each number: this yields an intriguing,
yet not fully understood pattern.

presence of twin primes, hence to solutions of equation (5). Still there
might be some other bad zeros creating irregularities in the distribution
of primes in progressions which have to be handled in a different way.
Furthermore, something interesting happens, say if q ≤ y is a prime
that does not divide the number shown at (7), but for which we would
like to apply (6). Namely,

q - n⇒ p - n for all primes p ≡ 1 (mod q). (8)

Say p1 ≡ 1 (mod q), and p1 - n. By (8), we have

p1 - n⇒ p - n for all primes p ≡ 1 (mod p1).

Iterating, we get that n is free of all primes p such that there is a chain
of primes

q ≺ p1 ≺ p2 ≺ · · · ≺ pk = p, (9)

where a ≺ b means that b ≡ 1 (mod a), and q is any prime not di-
viding m. To deal with this issue, one needs a bound for the counting
function N(q;x) of the number of prime chains of the form (9) with
p ≤ x. Luckily, this was done previously in a joint work of Ford et al.
[15]. Namely, they proved the following result.

Theorem 9 (Ford et al. [15]). For every ε > 0, there exists a contant
Cε such that uniformly for q ≤ x we have

N(q;x) ≤ Cε
(
x
q

)1+ε

.

Putting everything together and using some combinatorial argu-
ments for the counting, one does get that equation (4) has infinitely
many solutions even in the effective form claimed by Theorem 7.
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There are many other nice problems dealing with equations involving
the functions φ and σ which are still open. We close this paper by
recalling the following one proposed in [16].

Problem. Show that there are infinitely many solutions (m,n) to the
equationφ(m) = σ (n) withm square-free. k
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