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Three examples of applied
and computational homology

Computational algebraic topology has already existed for some decades, with as its main
objective the generation of examples. Nowadays, the field is rapidly changing into an applied
branch of mathematics that is important in its own right. Robert Ghrist, topologist at the
University of Illinois and one of the winners of the 2007 Scientific American 50 award, gives us
three examples that illustrate this development, each with a different origin.

Mathematics is limitless in its dual capacity
for abstraction and incarnation. To a large
degree, many of the modern revolutions in
technology and information rest on piers of
mathematics that assist, inform, or other-
wise catalyze progress. It appears that those
branches of mathematics which are most eas-
ily understood and communicated are pre-
cisely those which find greatest applicability
in the modern world. To conclude from this
that deeper or more difficult fields are inher-
ently less applicable would be premature.

Consider for example the utility of algebra-
ic topology. Long cloistered behind formal
and categorical walls, this branch of mathe-
matics has been the source of little in the way
of concrete applications, as compares with

its more analytic or combinatorial cousins. In
this author’s opinion, this is not due to a fun-
damental lack of applicability so much as to
1. the lack of a motivating exposition of the

tools for practitioners; and
2. an historical lack of emphasis on compu-

tational features of the theory.
These two issues are coupled. Advances

which demonstrate the utility of a topologi-
cal theory spur the need for good computa-
tion. Good algorithms for computing topolog-
ical data spur the search for further applica-
tions.

Algebraic topology is the mathematics that
arises in the attempt to describe the glob-
al features of a space via local data. That
such tools have utility in applied problems

concerning large data sets is not difficult to
argue. To give a sense of what is possible,
we sketch three recent examples of specific
applications of homological tools. This list
is neither inclusive nor ranked: these exam-
ples were chosen for concreteness, simplic-
ity, and timeliness. This brief and woefully
incomplete sketch is meant as an appetizer,
for which the truncated bibliography serves
as a menu for the second course.

On Homology.
Homology is a machine that converts lo-
cal data about a space into global algebra-
ic structure. In its simplest form, homolo-
gy takes as its argument simple pieces of a
topological space X and returns a sequence
of abelian groups Hk(X), k ∈ N. Homol-
ogy is a functor, which in practice means:
1. topologically equivalent spaces (homo-

topic) have algebraically equivalent (iso-
morphic) homology groups; and

2. topological maps between spaces
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f : X → Y

induce algebraic maps (homomorphisms)
on homology groups

f∗ : H∗(X) → H∗(Y ).

Numerous homology theories exist, fine-
tuned for different classes of spaces (sim-
plicial, cellular, singular, etc.).
Roughly speaking, homology groups count

and collate holes in a space. The simplest ex-
ample of a homological invariant is the num-
ber of connected components of a space —
dimH0 — the type of ‘holes’ that a zero-
dimensional instrument can measure. A less
trivial example of a homological invariant is
the Euler characteristic. The Euler character-
isticχ of a triangulated surface is the alternat-
ing sum of the number of simplices — vertices
minus edges plus faces — and that this quan-
tity is a topological invariant of the surface.
For more general (but tame) spaces, χ(X) can
be expressed either as the alternating sum of
the number of k-dimensional cells ofX, or, as

∞∑
k=0

(−1)k dimHk(X).

This quantity, being based on homology, is
an invariant. It is a signal example of a homo-
logical device, being both computable and in-
variant. Our first example of applied algebraic
topology relies on this invariant.

Looking Forward
The three examples here surveyed are all ap-
plications of homological tools to problems
of large and often noisy data sets. How-
ever, there are numerous other examples of
a different nature under the same aegis of
applied algebraic topology. Many of these
are obstruction-theoretic in nature — topolog-
ical measures of complexity of coordinating
robots, synchronizing a network, or perform-
ing distributed asynchronous computation.

The list of mathematical ideas which were
once erroneously derided as useless abstrac-
tions (uniform convergence, matrix algebra,
group theory, etc.) is sufficiently long and
embarrassing so as to suggest patience in
the case of applied algebraic topology. Giv-
en that the (hard) work of generating good al-
gorithms for computing topological invariants
for realistic systems is so recent [4], it can be
successfully argued that the current spate of
advances in applied algebraic topology is nei-
ther coincidental nor terminal. k

How many people are in the building?
Problem: Target Enumeration. Consid-
er a store whose ceiling tiles, walls,
and carpet are embedding with people-
counting sensors. How can these local
sensors collaborate to determine the
number of customers in the store?
Tool: Euler Characteristic Integration.
One of the fundamental difficulties in
large-scale sensor networks is data ag-
gregation. A sufficiently dense collec-
tion of nodes will sample an environ-
ment redundantly. The goal of sensing
is to compress this redundant local da-
ta into a global description of the envi-
ronment. The operation of stitching lo-
cal information over patches is the fun-
damental defining property of a sheaf,
a means of assigning an algebraic ob-
ject to open subsets of a space in such
a manner that restrictions and overlaps
are respected.
As an example, consider the prob-
lem of counting a collection of targets.
Some fixed but unknown number N of
targets lie in a domain D. The domain
is filled with sensors, each of which
can determine how many targets are
nearby. It matters not how the sensors
operate (e.g., via infrared, acoustic, or
optical sensing). Assume simple sen-
sors which merely detect the number
of nearby targets, with no information
about target identity, distance, or bear-
ing. In the continuum limit (where one
has a sensor at each point in D), this
yields a counting function h : D → N.
The problem is to determine the num-
ber of targets, given only h.
The solution lies in an elegant integra-
tion theory which uses Euler character-
istic as a measure. For compact sets
A, B, the Euler characteristic satisfies
χ(A∪B) = χ(A)+χ(B)−χ(A∩B). Note
the similarity of this to the definition
of a measure. Indeed, χ is a type of
scale-invariant topological volume, as
was known going back to Hadwiger and
Blaschke at least. It is straightforward
to construct a measure dχ against
which one can integrate certain func-
tions. The type of piecewise-constant
or constructible function h : D → N
that a sensor field returns is integrable
in this theory.
Recent work of Baryshnikov et al. [1]

d

Figure 1 Integration with respect to Euler char-
acteristic enumerates redundant data over a sensor
network.

gives a simple formula for computing
the number of targets as

∫
D hdχ, in

the setting where each target is detect-
ed by sensors on a topologically trivial
(e.g., convex) neighborhood. Because
this is a topological integration theo-
ry, there are no geometric restrictions.
Sensors can, e.g., count the number of
vehicles driving over a domain laced
with vibration sensors, counting sub-
compacts and SUV’s as equals.
This is the starting point for a broad
array of applications which rely on
constructible sheaves and the sheaf-
theoretic properties of dχ. Precise-
ly because the answer is expressed in
terms of an integration theory, one can
do the following:
• For a sparse network of sensor

nodes, determining the number of
targets becomes the numerical prob-
lem of approximating the topologi-
cal integral via a discrete sampling.

• Thanks to a version of the Fubini
theorem fordχ, one can count mov-
ing targets over time without the
need to embed clocks on the sen-
sor nodes.

• Because integration is a local op-
eration, target-counting can be per-
formed by the network itself with a
distributed, local computation.

Moral: “Data aggregation is a topolog-
ical integration.”
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It looks chaotic to me!
Problem: Experimental Verification of
Chaotic Dynamics. An experiment (phys-
ical or numerical) yields data that looks
chaotic. Is it rigorously chaotic, or just
noisy?
Tool: Conley Index Theory. One of the
great scientific lessons of the 20th cen-
tury was that when a physical system
exhibits erratic temporal behaviour, it
may not be due to randomness or poor
measurement — deterministic systems
can exhibit well-defined chaos. Howev-
er, it is a persistent challenge to demon-
strate that a given system is chaotic. The
Lorenz equations — themselves a car-
toon model of fluid flow — were only
recently shown to be rigorously chaot-
ic, after more than thirty years’ inquiry.
Still more intractable remain data com-
ing from physical experiments, in which
system noise and instrument errors con-
spire to frustrate analysis. There seems
to be little recourse for the experimen-
talist beyond saying: it looks chaotic to
me.
A prime feature of topological methods
is that, being global, they are typical-
ly impervious to the noise inherent in
physical systems. Such is the case here.
Work of Mischaikow et al. [5] uses a

CH*

Figure 2 The Conley index CH∗ of experimental time series data can rigorously verify chaotic dynamics.

homological invariant of dynamics com-
bined with a priori bounds on the noise
amplitudes to determine the rigorous dy-
namics of an experimental system based
on noisy time-series data.
The mathematical tool used is the Con-
ley index, an algebraic-topological ex-
tension of the Morse index. Consider the
flow of rainwater falling on a mountain-
ous terrain D: this flow is that of −∇h,
whereh : D → R is the height function of
the terrain. The Morse index of a critical
point ofh is an integer that classifies the
type of critical point: minima have index
0, saddle-passes have index 1, and max-
ima have index 2. The homological Con-
ley index enriches the Morse index from
integers to (homology types of) spaces:
for a Morse function, the Conley index of
a critical point is a sphere of dimension
the Morse index.
The Conley index, unlike the Morse in-
dex, applied to non-gradient and non-
smooth vector fields, as well as to
discrete-time dynamics. It is efficacious,
even to the point of detecting chaot-
ic dynamics. This index is computable
for realistic systems, thanks to recent
progress in computational homology [4].
Work of Mischaikow et al. takes (noisy)
time-series data and represents the dy-

namics as a multi-valued map on a cu-
bical complex. By adapting the Con-
ley index to this setting and computing
the homological index, it is possible to
verify the underlying dynamics, so long
as the noise tolerances respect the dis-
cretization assumptions. Rigorous re-
sults about experimental or numerical
data include the following:
• For experimentally-generated data on

the dynamics of a magneto-elastic
ribbon in an oscillating magnetic
field, a Conley index approach proves
that the experimental system is chaot-
ic (has positive topological entropy)
[5]. The method is robust, and works
even when environmental noise al-
ters the appearance of the data sig-
nificantly.

• Numerical simulations of the Kuramoto-
Sivashinsky partial differential equa-
tion indicate various stationary solu-
tions. A Conley index computation
[6] proves that these solutions ex-
ist, with a computational effort of the
same order as a re-run of the numeri-
cal solution at a finer resolution.

Moral: “It’s hardly more expensive to
prove the dynamics than to simulate it.”
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Figure 3 Persistent homology of a simplicial approximation finds hidden structures in large data sets.

What does the data look like?
Problem: High-Dimensional Data Analy-
sis. Given a large, high-dimensional da-
ta set, how can one determine its shape
and structure?
Tool: Persistent Homology. Though the
subject of topology is often introduced in
terms of doughnuts, coffee cups, knots,
or other visual icons, the true strength
of topology is the ease with which it
analyses high-dimensional objects. The
impact of this strength is perhaps best
asserted in data-analysis, where the in-
coming rate of large, high-dimensional
data sets currently far exceeds statisti-
cians’ abilities to analyse and describe
the data sets.
Assume for the sake of argument that
one is given a data set that consists of
a sampling (perhaps, though not nec-
essarily random) of a reasonable subset
X ⊂ En of Euclidean space. Nature has
trained the human brain to reconstruct-
ing shapes from planar projections, but
this works only for certain (small!) val-
ues of n.
Knowing the homology of X is a good
basis for asserting the global features of
the ‘true’ model X of the data. Sever-

al basic statistical ideas – e.g., cluster-
ing – are readily seen to correspond to
something homological, in this example
dimH0. The natural question presents
itself: how can one computeH∗(X) from
a discrete sampling of points N ⊂ X?
The work of Carlsson et al. employs the
following strategy. Fix a parameter ε >
0, and build a simplicial complex Rε as
follows: a k-simplex of Rε is a collection
of k + 1 data points inN pairwise within
distance ε. Fixing X ⊂ En a manifold,
then for ε sufficiently small and N suf-
ficiently dense, the complex Rε has the
same homotopy type (and thus homolo-
gy) as X. However, one is given a fixed
data set, and further refinement maybe
be expensive or impossible. Thus, one
is forced to vary ε. Which ε best captures
the true topology of the underlying data
set? For ε too small, Rε is a discrete set;
for ε too large, Rε is a single simplex. In
this context, the golden mean may not
exist.
Algebraic-topology suggests a function-
al approach. One of the simplest and
best insights of the Grothendieck pro-
gramme is the notion that the topolo-
gy of a given space is framed in the

mappings to or from that space. With
this perspective as guide, one consid-
ers the ordered sequence of spaces {Rε}
for ε > 0, stitched together by inclusion
maps ιε→ε′ : Rε ↪→ Rε′ for ε < ε′. The
homology of the family of maps ιε→ε′

is the called the persistent homology
of the data set: ιε→ε′∗ captures which
homological features (holes in the data
set) persist over the range of parameters
[ε, ε′].
Carlsson et al. use the classification of
modules over a polynomial ring (with
field coefficients) to compute persistent
homology and to correlate it with the
birth and death of topological features
in the data [7]. This allows a princi-
pled and automatic distillation of com-
plex data sets into global features — a
method that does not rely on projections
or heuristics.
Specific successes of the method in-
clude the following.
• Persistent homology was used [2] to

find significant features hidden in
a large data set of pixellated nat-
ural images compressed onto a 7-
dimensional sphere; most notable is
a persistent Klein bottle in H2, which
in turn yields insights into the struc-
ture of the space of natural images.

• Recent work [3] uses persistent ho-
mology to find hidden structures in
experimental data associated with
the V1 visual cortex of certain pri-
mates.

Moral: “The shape of the data lies not
in a single space, but in a diagram of
spaces.”
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