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Mathematical connections
It is truly a golden age for mathematics. We are witnessing an unprecedented confluence of
fields that demonstrates the unity of mathematical thought. Eugene Wigner has eloquently
named this phenomenon ‘the unreasonable effectiveness of mathematics’. Mathematical
ideas have the remarkable ability of turning up in the most diverse contexts. Paraphrasing the
opening of Wigner’s essay, whenever one meets a π , a sine or a cosine, one has to ask: where
is the circle hidden in my problem?

This deep connectivity is often overlooked by
the general public who easily get intimidat-
ed or frightened by mathematics. It is a con-
ventional wisdom among publishers of pop-
ular science books that every equation cuts
the potential readership in half. Most peo-
ple therefore overlook a modest but crucial
ingredient in these equations: the equals
sign. In its archetypal form A = B, the equals
sign connects two worlds represented by A
and B. Through it ideas can flow from A to
B and back, as if the equals sign conducts
the electric current that lights up the ‘Aha!’
light bulb in the mind indicating the insight
gained. Albert Einstein was an absolute mas-
ter in finding equations with that property.
Take E = mc2, which connects mass and
energy and is, without a doubt, the most fa-
mous equation in the public imagination. The
equations of general relativity, although less
catchy and well-known, link in an equally sur-
prising and elegant way the worlds of geome-
try and matter. Another beautiful illustration
is given by the Index Theorem of Atiyah and
Singer, where the left hand side represents
the world of global analysis and partial dif-
ferential equations, and the right hand side
represents the world of geometry and topol-
ogy. In that sense the discovery of a great
theorem can be the mathematical equivalent
of the collision of two continents. Just as
North and South America bumped into each
other three million years ago, and animals
and plants started moving up and down along
the Panama Isthmus, mathematical ideas can
flow between fields if they are connected by
a great theorem, generating new forms and
finding new applications.

If we pursue the analogy between conti-
nental drift and the movement of scientific
fields then we are living in a time of exception-
al geological activity. Interdisciplinary fields

are developing at an unprecedented speed.
My own discipline of mathematical physics
finds itself in a particularly active period. Re-
cent events illustrate this. The 2006 Fields
Medallists Okounkov, Perelman and Werner
all used crucial ideas from physics. The 2008
Crafoord Prize was awarded to Fields Medal-
lists Kontsevich and Witten for their work
connecting geometry and quantum physics.
The new Simons Centre for Geometry and
Physics at Stony Brook University, generous-
ly endowed by mathematician and financier
James Simons, is especially directed toward
this active area of research.

The synergy between physics and mathe-
matics is definitely not a new phenomenon.
Mathematics has a long history of drawing
inspiration from the physical sciences, going
back to astrology, architecture and land mea-
surements in Babylonian and Egyptian times.
Certainly this reached a high point in the sci-
entific revolution of the 17th century with the
development of calculus and classical me-
chanics. One of its leading architects Galileo
has given us the famous image of the ‘Book of
Nature’, which is waiting to be decoded by sci-
entists. In Il Saggiatore he writes: ‘Philoso-
phy is written in this grand book, the universe,
which stands continually open to our gaze.
But the book cannot be understood unless
one first learns to comprehend the language
and read the characters in which it is written.
It is written in the language of mathematics,
and its characters are triangles, circles, and
other geometric figures without which it is hu-
manly impossible to understand a single word
of it; without these one is wandering in a dark
labyrinth’. And this deep respect for math-
ematics didn’t disappear after the 17th cen-
tury. At the beginning of the last century we
again saw a wonderful intellectual union of
physics and mathematics when the great the-

ories of general relativity and quantum me-
chanics were developed. This was closely
watched throughout the mathematical world;
mathematicians actively participated, in par-
ticular in Göttingen where Hilbert, Minkowksi,
Weyl, Von Neumann and many others made
important contributions to physics.

Theoretical physics has always been fasci-
nated by the mathematical beauty of its equa-
tions. Here we can even quote Feynman, who
was certainly not known as a connoisseur of
abstract mathematics: ‘To those who do not
know mathematics it is difficult to get across
a real feeling as to the beauty, the deepest
beauty, of nature... If you want to learn about
nature, to appreciate nature, it is necessary to
understand the language that she speaks in’.
(Of course, he has also stated: ‘If all mathe-
matics disappeared today, physics would be
set back exactly one week,’ to which a mathe-
matician had the clever answer: ‘This was the
week that God created the world’.)

But despite the warm feelings expressed
by Feynman, the paths of fundamental
physics and mathematics started to diverge
dramatically in the 1950s and 1960s. In the
struggle to understand the stream of new sub-
atomic particles, physicists were close to giv-
ing up the hope of an underlying mathemat-
ical structure of nature. On the other hand
mathematicians were very much in an intro-
spective mode in that period. Dyson stated
in his Gibbs Lecture in 1972: ‘I am acute-
ly aware of the fact that the marriage be-
tween mathematics and physics, which was
so enormously fruitful in past centuries, has
recently ended in divorce’. But in some sense
these were famous last words because at
that time the Standard Model of elementary
particle physics was born. All the building
blocks of that model — gauge fields, curva-
tures, bundles, covariant derivatives, spinors,
Dirac equations — have turned out to have
completely natural mathematical interpreta-
tions. Soon mathematicians and physicists
started to build this dictionary and through
the work of Atiyah, Singer, Chern, Yang, ’t
Hooft, Polyakov and many, many others a new
period of fruitful interaction between mathe-
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matics and physics was born.
These days, under the influence of quan-

tum theory, the collision of physics and math-
ematics is producing many new fertile lands.
This is particularly true for string theory.
Its stimulating influence in mathematics will
have a lasting and rewarding impact, whatev-
er its final role in fundamental physics turns
out to be. The number of mathematical sub-
fields that come together is dizzying: anal-
ysis, geometry, algebra, topology, Lie theo-
ry, combinatorics, probability, operator alge-
bras, K-theory, categories — the list goes on
and on. One starts to feel sorry for the stu-
dents who have to learn all this! And it is
not only the case that physicists are using ad-
vanced mathematical techniques. There are
many ideas coming out of physics that have
truly influenced pure mathematics. In this re-
spect I like to paraphrase Wigner and speak
of ‘the unnatural effectiveness of physics in
modern mathematics’. To mention just three
areas: representation theory, low dimension-
al topology and algebraic geometry have all
been transformed in the last few decades.

In retrospect this development is not as
surprising as one might think. A traditional
role of physics has been to provide a ‘natu-
ral’ context for mathematical concepts. This
has been the case for the classical world but
is even more so for the quantum world, which
represents a more fundamental description of
reality. Even though our intuition, based on
everyday experience, is not very well-suited
to understanding the properties of elemen-
tary particles, ideas from quantum field theo-
ry carry tremendous mathematical power. For
example, whereas in classical mechanics a
particle travels fromA to B along a fixed path
determined by a variational principle (for ex-
ample, a geodesic), in quantum mechanics
one should consider the ‘sum over all histo-
ries’; all paths from A to B have to be consid-
ered in a weighted ensemble with the clas-
sical trajectory being the most likely. There-
fore quantum theory naturally leads to sum-
mations over objects in certain sets.

A striking example of this principle is mir-
ror symmetry. String theory suggests com-
putations of the number of complex curves
on a manifold not degree by degree but in
a single stroke by relating the counting func-
tion to a classical object (the period of a holo-
morphic form) on the associated ‘mirror man-
ifold’, which can have a very different topol-
ogy. A famous example of the power of mir-
ror symmetry is the original computation of
the quintic Calabi-Yau hypersurface in pro-
jective four-space by Candelas and collabo-

rators (Nucl. Phys. B359 (1991) 21). This
is a hard problem. The 2875 lines (degree
one curves) on the quintic are a classical
result from the 19th century. The 609250
different conics were only computed around
1980. Finally, the number of twisted cu-
bics 317206375 was the result of a compli-
cated computer program. However, thanks to
string theory, we now know the full expansion.
Here are the next terms: 242467530000,
229305999987625, 248249742118022000,
295091050570845659250, etc. When con-
sidered as coefficients in a power series they
form an elegant hypergeometric function.

It is comforting to see how mathematics
has been able to absorb the often dizzying-
ly imprecise heuristics of quantum physics
and string theory, and to transform these in-
tuitions into rigorous statements and proofs.
Remarkably, these proofs have often not fol-
lowed the path that physical arguments had
suggested. It is not the role of mathemati-
cians to clean the dishes of the physicists! On
the contrary, in many cases completely new
lines of thought had to be discovered in order
to find the proofs, as was the case for mirror
symmetry.

Niels Bohr was very fond of the notion of
complimentarity. Originally this related to the
fact that in quantum mechanics an electron
could be viewed either as a particle or as a
wave, but not both at the same time. The
‘correct’ point of view — particle or wave — is
solely determined by the nature of the ques-
tion, not by the nature of the electron. In
his later years Bohr tried to push this idea to
a much more embracing philosophy; one of
his favourite complementary pairs was truth
and clarity. Perhaps the pair of mathemat-
ical rigour and physical intuition should be
added as another example of two mutually ex-
clusive qualities. From that perspective, Pla-
to’s cave should be updated. Traditionally,
this is the place where precise mathematical
objects project vague shadows in the phys-
ical world. However, in the ‘quantum cave’
physical theories, which are often far from
completely understood, project razor-sharp
mathematical shadows and precisely formu-
lated conjectures, which can be checked and
proved.

From a wider perspective, beyond the tra-
ditional view of theoretical physics, it is clear
that mathematics has a unique role to play
in the rise of interdisciplinary research. It is
ideally positioned to bring disjoint fields of
research into contact. There is a charming
technical term used in the study of lattices
and sphere packings that indicates the num-

ber of spheres a given sphere touches: the
kissing number (the root lattice of the Lie al-
gebra E8 and the Leech lattice have for ex-
ample exceptionally high kissing numbers).
Perhaps mathematics as a whole can be char-
acterized as a science with an exceptionally
high kissing number.

This phenomenon is not only at work with-
in the sciences as a whole but also in mathe-
matics itself, although this is not universally
acknowledged and taught to our students. In
his powerful essay ‘On proof and progress in
mathematics’ (Bull. AMS 30, 2 (1994) 161–
177). Thurston raises the important question
of the ‘right’ definition of a mathematical con-
cept. He illustrates this with the idea of a
derivative. Of course there is the familiar εδ-
definition that scares every first year analysis
student. But Thurston raises the issue that
there are many other points of view that are
equally worthwhile. For example the dimen-
sion of time. Everyone has a natural idea
about rate and velocity, even near instanta-
neous — children have no trouble saying ‘for
a moment I went very fast’. In fact, one can
even ‘feel’ higher derivatives. The second
derivative of constant acceleration pushes us
deeper into our car seats; the third deriva-
tive or ‘jerk’ induces motion sickness. Equal-
ly important of course is the geometric way of
thinking, which immediately suggests gener-
alizations to more variables or higher dimen-
sions. Thurston lists many more aspects: lin-
ear, infinitesimal, symbolic, approximate. In
the end we need all these definitions to bring
to life the full concept of a derivative. Deep
mathematical notions are therefore like many
faceted diamonds. The connection to quan-
tum physics is just another valuable addition.

In this way the essence of mathematics is
captured very well by the humble symbol of
the equals sign in our equations. This in-
terconnectedness of mathematics, both inter-
nally and externally, is perhaps difficult to ex-
plain to a general audience, but it is easy to
hear! Just pronounce an equation. You will
notice that ‘is’ constitutes the only verb in the
sentence. It is an activity, as one has to ac-
tively connect A and B. That is an interesting
comment on the purpose of this congress and
on the nature of mathematics itself. k
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