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Profinite Fibonacci

numbers

Goede recreatieve wiskunde doet je meteen naar pen en papier grij-

pen. Het onderwerp moet eenvoudig en aanstekelijk zijn, het liefst

nog met allerlei raadselachtige eigenschappen binnen handbereik.

Hendrik Lenstra breekt een lans voor pro-eindige getallen. Rekent u

mee?

Profinite integers do not enjoy widespread popularity among

mathematicians. They form an important technical tool in sev-

eral parts of algebraic number theory and arithmetic geometry,

but their recreational virtues have never been recognized. The

purpose of the present paper is to acquaint the casual mathemat-

ical reader in an informal way with profinite integers and some

of their remarkable properties. The less casual reader is warned

that the approach is experimental and heuristic, and that the ex-

act meaning of many assertions may not always be instantly clear.

Providing not only precise formulations, but also valid proofs, is

a challenge that an expert in p-adic numbers and their analysis

can easily face, but that hardly does justice to the entertainment

value of the subject.

To define profinite integers, we recall that any positive integer

n has a unique representation of the form

n = ck · k! + ck−1 · (k − 1)! + . . . + c2 · 2! + c1 · 1!,

where the ‘digits’ ci are integers satisfying ck 6= 0 and 0 ≤ ci ≤ i,

for 1 ≤ i ≤ k. In the factorial number system, the number n is then

written as

(1) n = (ckck−1 . . . c2c1)! .

The exclamation mark distinguishes the factorial representation

from the decimal representation. For example, we have 5 = (21)!

and 25 = (1001)!.

If we allow the sequence of digits to extend indefinitely to the

left, then we obtain a profinite integer:

(. . . c5c4c3c2c1)! ,

where we still require 0 ≤ ci ≤ i for each i. Usually, only a few

of the digits are specified, depending on the accuracy that is re-

quired. In this paper, most profinite numbers are given to an ac-

curacy of 24 digits. For example, we shall encounter the following

profinite integer:

(2) l = (. . . 1604161318104768101049000120100)! .

In this number, the 19th digit has the value 18, but this is written
18 in order to express that it is a single digit. Note that by the

19th digit we mean the 19th digit from the right. Likewise, when

we speak about the ‘first’ digits or the ‘initial’ digits of a profinite

number, we always start counting from the right.

One can view each positive integer n as in (1) as a profinite

integer, by taking ci = 0 for i > k. Also 0 is a profinite integer,

with all digits equal to 0. The negative integers can be viewed as

profinite integers as well, for example

−1 = (. . . 242322212019181716151413121110987654321)! ,

with ci = i for all i. In general, negative integers are characterized

by the property that ci = i for all but finitely many i.

The ordinary arithmetic operations can be performed on profi-

nite integers. To add two profinite integers, one adds them digit-
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This picture shows the graph of the Fibonacci function Ẑ → Ẑ. Each element (. . . c3c2c1)! = ∑i≥1 ci i! of Ẑ is represented by the number ∑i≥1 ci/(i + 1)! in the unit interval,

and the graph {(s, Fs) : s ∈ Ẑ} is correspondingly represented as a subset of the unit square. Successive approximations to the graph are shown in orange, red, and
brown. Intersecting the diagonal, shown in green, with the graph, one finds the eleven fixed points 0, 1, 5, z1,−5 , . . ., z5,1 of the function. There are two clusters of three
fixed points each that are indistinguishable in the precision used. One of these clusters is resolved by a sequence of three blow-ups, with a total magnification factor of

14 × 16 × 18 = 4032. The graph of the function s 7→ −s, shown in blue, enables the viewer to check the formula F−s = (−1)s−1 Fs . The yellow squares contain the curve

{(s, t) ∈ Ẑ × Ẑ : s · (t + 1) = 1}, which projects to the group of units of Ẑ on the horizontal axis.

wise, proceeding from the right; when the sum of the ith digits is

found to exceed i, one subtracts i + 1 from it and adds a carry of

1 to the sum of the i + 1st digits. The reader may check that in

this way one finds that the sum of 1 and −1 equals 0. Subtraction

is performed in a similar manner. Multiplication can be done by

means of a more elaborate scheme, but it is often more practical

to compute products by means of the following rule: for each k,

the first k digits of the product of two profinite numbers s and t

depend only on the first k digits of s and of t. (This rule is also

valid for addition and subtraction.) Using this rule, one reduces

the problem of computing products to the case of ordinary pos-

itive integers. These operations make the set of all profinite in-

tegers into a commutative ring with unit element 1. This ring is

denoted Ẑ, the ring of profinite integers.
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Fibonacci numbers

Fibonacci numbers illustrate several features of profinite integers.

The nth Fibonacci number Fn is, for n ≥ 0, inductively defined by

F0 = 0, F1 = 1, and

(3) Fn = Fn−1 + Fn−2

for n > 1. It is well known that one can extend the definition to

negative n by putting Fn = (−1)n−1F−n, and that many familiar

identities, such as (3) and

(4) FnFm+1 − Fn+1Fm = (−1)m · Fn−m ,

then hold for all integers n and m. There is, however, no reason to

stop here.

For each profinite integer s, one can in a natural way define the

sth Fibonacci number Fs, which is itself a profinite integer. Name-

ly, given s, one can choose a sequence of positive integers n1, n2,

n3, . . . that share more and more initial digits with s, so that it may

be said that ni converges to s for i → ∞. Then the numbers Fn1 , Fn2 ,

Fn3 , . . . share more and more initial digits as well, and we define

Fs to be their ‘limit’ as i → ∞. This does not depend on the choice

of the sequence of numbers ni.

For example, we can write s = −1 as the limit of the numbers

n1 = (21)! = 5, n2 = (321)! = 23, n3 = (4321)! = 119, n4 =

(54321)! = 719, . . ., so that F−1 is the limit of

F5 = 5 = (21)! ,

F23 = 28657 = (5444001)! ,

F119 = 3311648143516982017180081

= (58261411810151323418173200001)! ,

F719 = (. . . 3161698161251111431149806000001)! ,

. . . ,

which is consistent with the true value F−1 = 1 = (. . . 000001)!.

For each k ≥ 3 the first k digits of Fs are determined by the

first k digits of s. This rule makes it possible to compute profinite

Fibonacci numbers, as we shall see below.

Many identities such as (3) and (4) are also valid for profinite

Fibonacci numbers. In order to give a meaning to the sign that ap-

pears in (4), we call a profinite integer s even or odd according as its

first digit c1 is 0 or 1, and we define (−1)s = 1 or −1 according-

ly. More generally, one defines a profinite integer s to be divisible

by a positive integer b if the factorial number formed by the first

b − 1 digits of s is divisible by b. For many b, it suffices to look

at far fewer than b − 1 digits. For example, if k is a non-negative

integer, then a profinite integer is divisible by k! if and only if its

k − 1 initial digits are zero. Two profinite numbers s1 and s2 are

called congruent modulo a positive integer b if their difference is

divisible by b, notation: s1 ≡ s2 mod b.

The following method may be used to compute profinite Fi-

bonacci numbers. Let s be a profinite number, and suppose that

one wishes to compute the sth Fibonacci number Fs to an accura-

cy of k digits, for some k ≥ 3. Then one first truncates s to k digits,

which gives a non-negative integer n that is usually very large. By

the rule mentioned above, Fs and Fn share at least k initial digits,

so it suffices to calculate Fn to a precision of k digits. To this end,

let ϑ be a symbol that satisfies the rule ϑ
2 = ϑ + 1. Then for all n

one has ϑ
n = Fnϑ + Fn−1. The left hand side can be quickly calcu-

lated by induction, even for very large n, if one uses the identities

ϑ
2m = (ϑm)2 and ϑ

2m+1 = ϑ
2m · ϑ. All intermediate results are

expressed in the form aϑ + b, where a and b are integers that are

only computed to a precision of k digits in the factorial number

system. Then in the end one knows Fn to a precision of k digits as

well, as required.

The Lucas numbers Ln, which are defined by L0 = 2, L1 = 1,

Ln = Ln−1 + Ln−2 (n > 1), can be generalized to profinite num-

bers in a completely similar manner. They are expressed in Fi-

bonacci numbers by Ls = Fs+1 + Fs−1. One has also FsLs = F2s

for all s ∈ Ẑ; however, it is not necessarily meaningful to write

Ls = F2s/Fs, since division is not always well-defined in Ẑ.

Power series expansions

A striking property of profinite Fibonacci numbers is that they

have power series expansions. If s0 ∈ Ẑ, then the power series

expansion for Fs around s0 takes the shape

(5)

Fs = Fs0 + lLs0 (s − s0) + 5l2Fs0

(s − s0)
2

2!

+ 5l3Ls0

(s − s0)
3

3!
+ 52l4Fs0

(s − s0)
4

4!
+ . . .

=
∞

∑
i=0

(

5il2iFs0

(s − s0)
2i

(2i)!
+ 5il2i+1Ls0

(s − s0)
2i+1

(2i + 1)!

)

,

where l is a certain profinite integer that is given by (2). The num-

ber l is divisible by all prime numbers except 5. From this it fol-

lows that 5il2i and 5il2i+1 are divisible by (2i)! and (2i + 1)!, re-

spectively, so that the coefficients in the power series expansions

are profinite integers.

No prime number p is known for which l is divisible by p2. In

fact, if p is a prime number, then the number of factors p in l is the

same as the number of factors p in Fp−1Fp+1, and no prime num-

ber is known for which Fp−1Fp+1 is divisible by p2. One may,

however, reasonably conjecture that there exist infinitely many

such primes.

An informal derivation of (5) can be given as follows. Let again

ϑ be such that ϑ
2 = ϑ + 1, and put ϑ

′ = 1−ϑ. Then for all integers

n one has Fn = (ϑn − ϑ
′n)/(ϑ − ϑ

′) and Ln = ϑ
n + ϑ

′n. This sug-

gests that one has Fs = (ϑs − ϑ
′s)/(ϑ − ϑ

′) and Ls = ϑ
s + ϑ

′s for

all profinite integers s as well, and with a suitable interpretation

of the powering operation this is indeed correct. Now consider

the Taylor series for Fs around s0:

Fs =
∞

∑
j=0

F
( j)
s0

(s − s0)
j

j!
,

where F
( j)
s = d j Fs

ds j denotes the jth derivative. To calculate these

higher derivatives, one first notes that from ϑϑ
′ = −1 one obtains

2(log ϑ + log ϑ
′) = 2 log(−1) = log 1 = 0,

and therefore log ϑ = − log ϑ
′. This leads to

dFs

ds
=

d

ds

ϑ
s − ϑ

′s

ϑ − ϑ′
=

log ϑ

ϑ − ϑ′

(

ϑ
s + ϑ

′s) =
log ϑ

ϑ − ϑ′
Ls ,

dLs

ds
= log ϑ ·

(

ϑ
s − ϑ

′s) = log ϑ · (ϑ − ϑ
′) · Fs .

Combining this with (ϑ − ϑ
′)2 = 5, one finds

F
(2i)
s = 5il2iFs , F

(2i+1)
s = 5il2i+1Ls

for each i ≥ 0, where

(6) l =
log ϑ

ϑ − ϑ′
.
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This leads immediately to (5).

If one makes this informal argument rigorous, using an appro-

priate theory of logarithms, then one discovers that the precise

meaning of (5) is a little more subtle than one may have expected.

Namely, one should interpret (5) to mean that, for each positive

integer b, the following is true for every profinite integer s that

shares sufficiently many initial digits with s0: if k is any positive

integer, then all but finitely many terms of the infinite sum are di-

visible by bk, and the sum of the remaining terms is congruent to

Fs modulo bk. For example, if b divides 5! = 120, then it suffices

for s to share three initial digits with s0, and if b divides 36! then

six initial digits are enough.

One application of the power series development is the deter-

mination of l to any desired precision. Namely, put s0 = 0, so that

Fs0 = 0 and Ls0 = 2. Then the power series development reads

(7) Fs = 2ls +
2·5·l3·s3

3!
+

2·52·l5·s5

5!
+ . . . .

Suppose that one wishes to determine the first 35 digits of l, or,

equivalently, the residue class of l modulo 36!. Modulo any power

of 36!, the expansion is valid for profinite numbers s of which the

first six digits are zero. Choose

s = 216 · 38 · 54 · 7 = (168133000000000)! .

Using that l is divisible by all prime numbers except 5, one easily

sees that in (7) each term on the right beyond the first term is

divisible by 2s · 36!. Calculating Fs modulo 2s · 36! by means of

the technique explained earlier, and dividing by 2s, one finds l

modulo 36!:

l = (. . . 263351131711234711604161318104768101049000120100)! .

One may also compute l directly from (6), if a good method for

computing logarithms is available.

Fixed points

The power series expansion also comes in when one wishes to de-

termine the fixed points of the Fibonacci sequence, i. e., the num-

bers s for which Fs = s. It is very easy to see that among the

ordinary integers the only examples are F0 = 0, F1 = 1, F5 = 5.

In Ẑ, there are exactly eight additional fixed points, namely the

following profinite numbers:

z1,−5 = (. . . 7115481617861065657871411001)! ,

z1,−1 = (. . . 182130081315180733953122001)! ,

z1,0 = (. . . 131650716147116811133471411001)! ,

z1,5 = (. . . 19214186161161621129010071411001)! ,

z5,−5 = (. . . 1214082061771021048800000021)! ,

z5,−1 = (. . . 23232131411814151411111124871411021)! ,

z5,0 = (. . . 1819041030123128524400000021)! ,

z5,1 = (. . . 521831437110133113110916244021)! .

The notation za,b, for a ∈ {1, 5}, b ∈ {−5, −1, 0, 1, 5}, is chosen

because we have

za,b ≡ a mod 6k , za,b ≡ b mod 5k

for all positive integers k; this uniquely determines za,b as a fixed

point of the Fibonacci sequence. (For a = b ∈ {1, 5} one may take

za,b = a.)

There are several techniques that one may use to calculate the

numbers za,b to any required precision. The first is to start from

any number x0 that satisfies x0 ≡ a mod 24, x0 ≡ b mod 5k,

where k is at least one quarter of the required number of digits,

and k ≥ 2, and next to apply the iteration xi+1 = Fxi . This con-

verges to za,b in the required precision, but the convergence is not

very fast. One can accelerate this method by choosing a starting

value x0 for which x0 − a has a greater number of factors 2 and 3.

The second method is to apply a Newton iteration to find a zero

of the function Fs − s:

xi+1 = xi −
Fxi − xi

lLxi − 1
.

This requires some care with the division that is involved, and

one needs to know l to the same precision. However, it converges

much faster, even if the starting value x0 only satisfies x0 ≡ a mod

24, x0 ≡ b mod 25.

The eight fixed points za,b have, imprecisely speaking, the ten-

dency to approximately inherit properties of a, b. For example,

each of a = 1 and b = 0 is equal to its own square, and, corre-

spondingly, z1,0 is quite close to its own square, in the sense that

the nine initial digits are the same:

z2
1,0 = (. . . 136620407953102255471411001)! .

Each of a = 1, b = −1 has square equal to 1, and this is almost

true for z1,−1:

z2
1,−1 = (. . . 2217101000000000000000000001)! .

Studying the expansions of z1,5 and z5,1, one discovers that for

each i with 4 < i ≤ 24 their ith digits add up to i. This is due to

the remarkable relation

z1,5 + z5,1 = (. . . 000000000000000000000100)! ,

which reflects the equality 5 + 1 = 6 = (100)!. Likewise, 5 · 1 =

5 = (21)! is reflected in

z1,5 · z5,1 = (. . . 000000000000000000000021)! .

However, greater precision reveals that z1,5 + z5,1 6= 6 and z1,5 ·

z5,1 6= 5:

z1,5 = (. . . 22926262416319214186161161621129010071411001)! ,

z5,1 = (. . . 263231022521831437110133113110916244021)! ,

z1,5 + z5,1 = (. . . 5500000000000000000000000000100)! ,

z1,5 · z5,1 = (. . . 252500000000000000000000000000021)! .

The number z5,−5 is the most mysterious of all. By analogy,

one suspects its square to be close to 52 = (−5)2 = 25 = (1001)!,

without being exactly equal to it. Confirming this suspicion re-

quires considerable accuracy:

z2
5,−5 = (. . . 146

174
113

222200000000000000000000000000000000000000

00000000000000000000000000000000000000000000000

00000000000000000000000000000000000000000000000

00000000000000000000000000000000000000000000000

000000000000000001001)! .

Here even the expert may be baffled: given that z2
5,−5 is differ-

ent from 25, is there a good reason for the difference not to show

up until after the two hundredth digit? k


