
130 NAW 5/6 nr. 2 juni 2005 Japanese Oysters in Dutch Waters Jan Bouwe van den Berg e.a.

Jan Bouwe van den Berg
Corresponding author
Afdeling wiksunde

Vrije Universiteit

De Boelelaan 1081a

1081 HV Amsterdam

janbouwe@few.vu.nl

Gregory Kozyreff

Hai-Xiang Lin

John McDarby

Mark A. Peletier

Robert Planqué

Phillip L. Wilson

Studiegroep wiskunde met de industrie

Japanese Oysters in Dutch Waters

Since the introduction of the Japanese oyster in the Eastern Scheldt

it has spread into the Wadden Sea. This growth has a negative

impact on the life of various other species in the sea. Seen from

a mathematical viewpoint, the biological problem of how to restore

the disturbed natural equilibrium has a great complexity. Which

solutions can the Study Group Mathematics with Industry supply to

tackle this problem?

In 1964 the Japanese Oyster (Crassostrea gigas) was introduced into

the Eastern Scheldt. It was believed that this species could not

breed in the colder Dutch climate; each generation would have

to be set out by hand. Therefore this introduction was expected

to have limited impact on the local ecosystem. Moreover, at that

time the plan was to close off the Eastern Scheldt, or a part of it, so

that even if spawning occurred, the problem would remain local.

Unfortunately the brief hot spells of some Dutch summers al-

lowed the Japanese Oysters to spawn. With a maximal life span

of thirty years the population proved able to spawn in the rare

hot years and simply survived in other years. As a result, the

Japanese Oyster is now a dominant species in the Eastern Scheldt.

The indigenous flat oyster (Ostrea edulis) has almost completely

disappeared, mainly due to disease and the very cold winter of

1963. The cockles are declining in number, and mussels have been

confronted by the appearance of a strong competitor for food.

In addition, the Japanese Oyster has spread beyond the Eastern

Scheldt and settled in parts of the Western Scheldt and the Wad-

den Sea. At present, the main negative impact is that the Japanese

Oysters compete with cockles for space and food. In turn, the de-

cline in cockles causes problems for the birds that feed on them.

A bank of Japanese oysters

At the Study Group two Dutch institutes, the Nederlands Insti-

tuut voor Visserijonderzoek (The Netherlands Institute for Fish-

eries Research1 ) and Rijksinstituut voor Kust en Zee (RIKZ, The

Netherlands Institute for Coastal and Marine Management), pre-

sented the issue of the spreading of the Japanese Oysters. The

following questions were formulated:

− How do oysters spread?

− Can development in the past be reconstructed?

− Can a prediction be made for the future?

− Can the spreading of the oysters be stopped? How?
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Overview

In this article we address these questions from a number of differ-

ent viewpoints. Let us give an overview of the different models

and their outcomes.

− In Diffusion of larvae we present a first study of the spreading

of oysters. We assume a favourable (i.e. hard) substrate and

model the spread of oysters from year to year. We indicate how

to extend this model to perform simulations to reconstruct the

spreading of oysters from 1964 onwards.

− In The effect of substrate hardness on the spreading of an oyster bank

we simplify the model of Diffusion of larvae by passing to con-

tinuous time, and compare spreading velocities between soft

and hard substrates. We find a significant difference in spread-

ing velocity.

− In Influencing the population by reduction of salinity we study a

proposed remedy of re-opening the dams that currently pre-

vent river water from entering the Eastern Scheldt. The re-

duction in salinity that results from the influx of fresh water

may reduce the growth rate of the oysters. Extending a recent

simulation at RIKZ, we consider a scenario of partial, season-

al re-opening of the dams, and find that the effect on salinity

is similar to that of a permanent reopening scenario, but with

some advantages. The main conclusion, however, is that the

proposed regulation of salinity is not sufficient to significantly

control the growth of oysters in the Eastern Scheldt.

− In Outline of a large-scale simulation, finally, we present an out-

line of a large-scale simulation that takes into account the de-

tailed geometry and geology (such as substrate hardness) of

the Eastern Scheldt. This simulation might be implemented as

an extension of a code that is currently in use at Rijkswater-

staat.

1 Diffusion of larvae

At the end of July of a hot year, the rising of the sea temperature

over a certain threshold triggers a massive production of oyster

larvae. During their 15–30 day life span, the flow transports these

larvae passively in random directions until they settle. This trans-

port is probably the main mechanism by which Crassostrea gigas

invaded the whole Eastern Scheldt. In this section, we will anal-

yse this mechanism, in conjunction with a simple model of the

interaction between the oyster and larvae populations. We will

restrict our attention to the eastern part of the Eastern Scheldt,

where the Crassostrea gigas was introduced in 1964. Indeed, this

region is characterised by relatively shallow water and weak cur-

rents, which hampers the geographic progression of oysters. Be-

cause of this, it took years before the oyster population reached

the central part of the Eastern Scheldt. Afterwards, larvae became

subjected to much stronger currents and were therefore prone to

colonise the rest of the Eastern Scheldt in a relatively short peri-

od. At least, this is one of the possible scenarios. Slow adaptation

of the Japanese Oysters to the local environment may also have

contributed to the time delay before the central part was reached.

Probably a combination of factors, partly due to the construction

of the Delta works, has caused the explosion of Japanese Oysters

in the Eastern Scheldt.

The simplest description of the geographical spreading of oysters

should comprise two independent variables: one for the larvae

population and one for the oysters. Hence we introduce:

Figure 1 Map of the Eastern Scheldt

− On (x): the density of oysters, expressed in m−2, in year n. On

depends on the position x, which is one-dimensional, for sim-

plicity;

− Ln (x, t): the density, also expressed in m−2, of larvae in the

summer of year n. Ln depends on position x and time t.

During their short life, we model the transport of larvae by a

reaction-diffusion equation of the form:

∂Ln

∂t
= DT

∂2Ln

∂x2
+ Q (Ln , On) .

(1)

In this equation, the first two terms describe the diffusive trans-

port averaged over an entire tidal cycle. The last term Q accounts

both for the production and the disappearance of larvae, either by

death or by settlement on the ground. A crucial parameter is the

diffusion coefficient DT and we will estimate it below. As for the

oysters, their density varies from year to year according to:

On+1 = On + G (Ln , On) ,
(2)

where G is the number of newly born oysters minus the deceased

ones per unit area. For the moment, we do not specify the func-

tionals Q and G. Several choices of Q and G will be presented

in this report and many variations are possible. The choice be-

tween these requires a delicate balancing of the questions that are

to be addressed, on one hand, with the available data on the oth-

er. More complex models, often used for the purpose of tracking

growth in cultivated oysters, sort the individuals by size and in-

troduce as many oyster variables as there are size-classes [3]. In

this work, motivated by the relative lack of data2, we discard such

aspects of the dynamics and, with the exception of the final sec-

tion, focus on models of minimal complexity.

In the following sections we first model the spreading of oys-

ter larvae to determine DT (Diffusion-convection over a single tidal

cycle). Then we discuss the factors that influence the growth, sur-

vival and reproduction of oysters and larvae, and we present the

outcome of the model (Completion of the model and outcome). Final-

ly, in Continuous time dependence for oysters, a continuous time lim-

it is derived, which serves as a connection to the continuous time
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model discussed in The effect of substrate hardness on the spreading

of an oyster bank.

Diffusion-convection over a single tidal cycle

On the time scale of a tidal cycle the larvae are subject to a tidal

flow. Let us set Q = 0 for the present discussion. With u the

water velocity generated by the tides, the transport equation for

the larvae becomes

∂L

∂t
+ u

∂L

∂x
= D

(

∂2L

∂x2
+

∂2L

∂z2

)

,
(3)

where D is the coefficient of diffusion in the absence of tide and

where L is assumed to also depend on the vertical coordinate z.

As was first recognised by Taylor [15], a nonuniform vertical

distribution of u accelerates the dispersion of particles. This can

be understood by noting that at a depth z where u is maximal, par-

ticles (e.g. larvae) are likely to travel over much longer distances

than those at depths where u is small.

If u = u (z), we can show that Equation (3) can be approxi-

mated in the long time limit by the following, simpler equation:

∂L

∂t
+ U0

∂L

∂x
= (D + DT)

∂2L

∂x2
,

(4)

where U0 is the average velocity of the flow over the z-direction.

While Equation (4) applies to the rising tide, the falling tide is

described by

∂L

∂t
− U0

∂L

∂x
= (D + DT)

∂2L

∂x2
.

(5)

Hence, averaging over many tides, we obtain

∂L

∂t
= (D + DT)

∂2L

∂x2
.

(6)

Since we are primarily interested in the diffusion of larvae in the

horizontal directions, and owing to its relative simplicity, Equa-

tion (6) represents progress from Equation (3).

With the sea level and sea bed respectively denoted by h and

z0, the new diffusion coefficient is given by [11]

DT =
U0

D (h − z0)

∫ h

z0

[

∫ z

z0

(

1 −
u (z′)

U0

)

dz′
]2

dz.
(7)

Our first task will therefore be to assess the velocity profile u re-

sulting from the tidal flow. Actually, u depends on x as well as z.

Hence, DT = DT (x) and Equation (4) has to be slightly modified,

as shown in the appendix.

Tidal flow

For a shallow part of the sea the determination of u is relatively

simple. Let the elevation of the sea bed be denoted by z0 (x). As

a result of the tides, the sea level is a function of time and is given

by z = h (t). From the “shallowness” hypothesis, and assuming

low velocities, the Navier-Stokes equations for the flow reduce to:

0 = −
dp

dx
+ µ

∂2u

∂z2
.

(8)

In this equation, p is the pressure and µ is the viscosity of wa-

ter. This equation must be supplemented by two boundary condi-

tions. One is that the velocity vanishes on the sea bed, u (z0) = 0.

The other is that the sea surface is free of any applied stress, which

translates into ∂u
∂z (h) = 0. This allows us to write the solution of

(8) as:

u (x, z) =
1

2µ

dp

dx
(z − z0) (z − 2h + z0) ,

= C (z − z0) (z − 2h + z0) .

(9)

In this expression the constant C is determined by the conserva-

tion of mass. Considering a slice dx of fluid, the rise or fall of its

level, dh
dt , is only due to incoming and outcoming flux of water on

either sides of the slice. This leads to the equation

dh

dt
+

∂
∂x

∫ h

z0

u (x, z) dz = 0.
(10)

Substituting (9) into (10), we find:

u (x, z) =
3

2
U0

(z − z0) (2h − z − z0)

(h − z0)
2

,
(11)

where U0 is the average velocity, given by

U0 =
dh/dt

dz0/dx
.

Estimation of DT

The value of D is estimated to be 10−4 m2s−1 for stratified flow

and 10−3 m2s−1 for well mixed flows [17]. These values are ob-

tained by measuring the diffusion in the vertical direction, which

is not affected by the tidal flow. During the rising tide, the sea

level rises by 3 meters in 6 hours, and we assume the slope of the

sea bed to be 1%. Hence, U0 is estimated to be

U0 ≈
3 m/ (6 · 3600 s)

0.01
≈ 0.02 ms−1.

Then, substituting Expression (11) into (7), we obtain:

DT =
2U0 (h − z0)

2

105D
.

(12)

Hence, with a sea depth of 3-4 m, a vertical diffusion D of

10−3 m2s−1 and our estimate of U0, we get

DT ≈ 0.1 m2s−1,

which is considerably larger than D.

As we already noted, DT is a function of x. It is therefore tempt-

ing to simply rewrite the diffusion term in the right hand side of

(6) as ∂
∂x DT (x) ∂

∂x L. However, we must bear in mind that the ef-
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fective parameter DT (x) encompasses more than just Fick’s law

of transport. The actual reduced diffusion equation turns out to

be

∂L

∂t
= DT

[(

1 +
D

DT

)

∂2L

∂x2
−

12 (dz0/dx)

(h − z0)

∂L

∂x

]

,
(13)

(see the appendix). For simplicity, in what follows, we will neglect

spatial variations of DT .

Completion of the model and outcome

In order to be able to forecast the expansion of the oysters, we

need to choose sensible and simple forms for Q and G.

Female and male oysters are able to detect the presence of eggs

and sperm in the water [12]. In order to maximise fecundation,

they all release their gametes at the same time. Accordingly, the

production of larvae is modelled by the initial condition

Ln (x, 0) = FOn ,
(14)

where F is the fecundity of an oyster and is the combination of

several factors, such as the size of the oyster, the salinity of wa-

ter and the likelihood of an egg to be fertilised. An expression

derived from observation is [9]

F = Fl FsFf

with

− Fl = 0.4 l2.8: size factor, where l is the size of the oyster in cm.

− Fs = s−8
5.5 : salinity factor, where s is the salinity of water, ex-

pressed in grams of chloride per litre,

− Ff = 0.005 O0.72
n : fertilisation efficiency.

Moreover, since the larvae only have an approximate 15–30 day

life span, we include a death rate in the larvae equation:

∂Ln

∂t
= DT

∂2Ln

∂x2
−

Ln

t∗
, t∗ = 30 days.

(15)

Of the larvae that are transported according to this equation, only

a tiny fraction λ will actually be able to settle. The magnitude of

this fraction depends on a number of factors, among which the

hardness of the substrate and the presence of other oysters. In

this section we will assume that the substrate is hard, providing

a good environment for settling larvae. In The effect of substrate

hardness on the spreading of an oyster bank we study the effect of

substrate hardness in detail.

The presence of other oysters on the substrate will result in

competition for nutrients and predation of larvae from the mature

oysters. This overcrowding factor is supposed to only be effective

when the oyster density passes a certain threshold Osat. Finally,

approximately one tenth of the oyster population dies each year

[3]. These considerations lead to the following equation for the

oyster population

On+1 (x) = On (x) +
λLn (x, t∗)

1 + On (x) /Osat
−

On (x)

10
(16)

From the observation of actual oyster banks, Osat ranges between

30 m−2 and 100 m−2.

Figure 2 Yearly evolution of the oyster distribution vn with Λ = 10 (left) and oyster
density v12 at the border of the Eastern region after 12 years for various values of Λ (right)

Prior to the integration of Equations (14)–(16), it is useful to intro-

duce dimensionless variables as

T =
t

t∗
, X =

x

(DTt∗)1/2
≈

x

400 m
,

un =
λLn

Osat
, vn =

On

Osat
.

The system of equations to solve for each year thus becomes

∂un

∂T
=

∂2un

∂X2
− un ,

(17)

un (X, 0) = Λvn (X) ,
(18)

vn = 0.9vn−1 +
un−1 (X, 1)

1 + vn−1
.

(19)

In these equations, the only free parameter that remains is

Λ = λF.

It represents the number of newly born oysters per oyster per year

in the absence of overcrowding effect. Each year n, the diffusion

equation (17) is integrated with initial condition (18) and the oys-

ter population is updated according to (19).

From 1964 onwards, oysters were introduced and cultivated on

100 m wide squares approximately 8 km away from the central

region. In the new space scale, 100 m → 0.25 and 8 km → 20.

We now assume that there has been a small amount of spawning

every year since the introduction in 1964. The first settling of oys-

ter larvae, called spat at this stage, on dike foots and jetties was

recorded in 1976. Hence, we need to integrate the system above

for 12 years, n = 1, . . . , 12, and check whether a significant num-

ber of oyster and larvae could reach the central region. Initially,

the oyster distribution is given by

v0 (X) =

{

1, 0 < X < 0.25,

0, 0.25 < X.

It is a simple task to integrate the system (17)–(18) numerically

with the initial condition above. The result is shown in Figure 2

and suggests that the development in the past can indeed be re-

constructed with this simple model provided that Λ ≥ 8–10.
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Continuous time dependence for oysters

To close this section, let us remark that the system (17)–(18) can be

made amenable to further analytical development by turning the

difference Equation (19) into a differential one. Indeed, assuming

that the variation of oyster population density is small from year

to year, we can write

v (n + 1) ≈ v (n) +
∂v

∂n
,

where n is now considered as a continuous variable that measures

time in units of years. we thus have: n = t
year = t

month
month
year =

εT, so that, generally, the larvae/oyster model can be cast in the

following form:

ε
∂u

∂n
=

∂2u

∂X2
+ Q,

∂v

∂n
= G.

(20)

Discussion

In this section we have sketched a way to model the oyster expan-

sion in the Eastern Scheldt. The simplest choice of the generation

rates Q and G of larvae and oysters, respectively, already proves

quite informative. After rescaling variables, only one free param-

eter remains: Λ, the number of descendants per oyster per year

in the absence of any overcrowding effects. It was found that Λ

needs to be in the order of 10 in order to reconstruct a specific as-

pect of the history of oyster proliferation, the time lapse between

the introduction in 1964 and the first large-scale sightings in 1976.

Although this value may appear large, we must bear in mind that

it does not account for overcrowding effects. Moreover, the more

accurate diffusion model (18) would probably require smaller val-

ues of Λ, owing to the dependence of DT on the sea depth.

Although the proliferation of oysters was only observed in

1976, the present analysis suggests that it had actually been tak-

ing place right from the beginning of their implantation in 1964.

Because it was under water and at some distance from the shores,

it is possible that the process went unnoticed before 1976.

Let us finally note the large values attained by the oyster den-

sity in Figure 2. The result from the relatively long life span of

oysters. However, overcrowding should be taken into account in

the death rate of oysters. It is indeed observed that oysters grow

on top of each other, so that only the top layer is alive. This point

is at least partially addressed in the next sections.

2 The effect of substrate hardness on the spreading of an oyster

bank

In this section we study the spreading of an oyster bank where we

concentrate on the phenomenon that oysters prefer to settle on a

hard substrate rather than a sandy one.

The Fisher-Kolmogorov equation

The classical model [10] for spatial spreading of any biological

species is the Fisher-Kolmogorov (FK) equation

∂u

∂t
= D∆u + f (u),

(21)

where ∆ is the Laplacian (in the spatial coordinates), D the diffu-

sion constant and f is a nonlinear function, typically

f (u) = u(1 − u)
(22)

or

f (u) = u(u − a)(1 − u) with 0 ≤ a ≤ 1.
(23)

The Fisher-Kolmogorov equation has been analysed in excruciat-

ing detail. We will only recall a few results here to serve as a guide

for a more specialised model presented in An oyster-larvae model.

In the present context u can be interpreted as the biomass of

the oysters (or their number) per unit area. The crucial difference

between the nonlinearities (22) and (23) is that for the former the

trivial equilibrium u = 0 is unstable while for the latter it is sta-

ble at least in the absence of diffusion. The equilibrium u = 1

is stable in both cases. We will refer to (22) as the monostable

case and to (23) as the bistable case. One interpretation is that the

monostable case corresponds to oyster growth on a hard substrate

(rocks or concrete), whereas the bistable case corresponds to oys-

ter growth on a soft substrate (a sand bank). Without going into a

biological interpretation we now state some mathematical results.

In An oyster-larvae model we discuss the choice of nonlinearities in

more detail.

The dynamics of solutions of (21) are dominated by travelling

wave solutions, i.e., solutions of the form u = U(x − ct), where

c is the speed of the wave, and x is the direction of propagation.

The waves of interest are those connecting the solutions u = 0 (no

oysters) and u = 1 (thriving oyster population).

In the monostable case there exist travelling waves with arbi-

trarily large speed, hence a priori the oysters could spread at arbi-

trarily large rates. However, (most) solutions, in particular those

starting from compactly supported initial data corresponding to

a well-defined bank of oysters, select the velocity cmono = 2
√

D,

which is also the minimal speed among the everywhere positive

travelling waves.

In the bistable case there is a unique travelling wave; it has ve-

locity cbi = (1 − 2a)
√

D
2 . Hence for a <

1
2 the oysters spread, i.e.

u = 1 ‘invades’ u = 0. Clearly cmono < cbi for any a ∈ [0, 1/2).

Although this information has limited value since we have ig-

nored implicit scalings in the argument, the idea is that the oysters

spread more rapidly on a hard than on a soft substrate. With these

differences in mind we now turn to a more detailed model which

incorporates both oysters and larvae.

An oyster-larvae model

We consider a model which takes into account two stadia in the

life cycle of an oyster, with obviously different dynamic capabil-

ities, namely oysters which are fixed to the seabed and larvae

which float around in the sea. We thus disregard (or assume in-

significant) the fact that oysters may detach from the seabed and

move to more favourable grounds. Of course there are many oth-

er features that we do not include in our model either.

From Diffusion of larvae we pick up the discussion at the

continuous-time system of Equations (20). We briefly return to

the dimensional variables O and L for oysters and larvae. As-

suming that the larvae diffuse, with diffusion constant D, die at

rate E per unit time and that, as in Diffusion of larvae, each oyster

produces F larvae per unit time, we obtain the equation
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Lt = DLxx − EL + FO,
(24)

which is analogous to Equation (1), with a particular choice of Q.

Here subscripts denote partial derivatives. For simplicity, and

since we are going to look at travelling waves anyway, we take

into account only one spatial dimension.3

The more interesting part of the model is the choice of the non-

linearity G which describes the transition of larvae to oysters. We

assume that the increase in oyster population is proportional to

the amount of larvae, with proportionality constant A, and that

the growth saturates when the oysters reach some maximal den-

sity Osat, due to competition for food and/or space which makes

it harder for larvae to settle. Additionally, we include a death rate

C. This leads to

Ot = AL(1 − O/Osat) − CO.
(25)

Since the oysters are immobile there is no diffusion term. Alter-

natively, when the sea bed is sandy, the larvae prefer to settle on

existing oysters (dead or alive), which we model by

Ot = AL(O/Osat + δ)(1 − O/Osat) − CO
(26)

with 0 ≤ δ ≪ 1 a dimensionless measure for the relative prefer-

ence of larvae to settle on a soft compared to a hard substrate. We

note that the choice δ = 0 prevents spreading of oysters to previ-

ously unoccupied territory: since Equation (26) contains neither

diffusion nor convection, O(x, 0) = 0 implies O(x, t) = 0 for all

t ≥ 0.

For (25), in combination with (24), the trivial equilibrium

(L, O) = (0, 0) is unstable provided AFE−1
< C, while for (26) it

is stable provided δAFE−1
< C (the inequalities have an obvious

interpretation). In the following we will assume that

δ <
CE

AF
< 1.

(27)

The situation is thus very similar to the comparison between the

monostable and bistable cases for the scalar equation in The Fisher-

Kolmogorov equation.

In true study group spirit, some educated guesses for the pa-

rameters are

A : 10−5 y−1 Osat : 102 m−2 C : 10−1 y−1

D : 10−1 m2s−1 E : 3 · 101 y−1 F : 107 y−1 δ : 10−2
(28)

The death rates C and E follow from the life span of the oysters

and of the larvae. The maximal oyster density Osat is estimated

from existing oyster banks. The diffusion coefficient D was esti-

mated in Diffusion of larvae, (and then called D + DT). The larvae

production per oyster per year F and the ratio δ were estimat-

ed by experts from the Animal Sciences Group. The larvae-to-

oyster transformation rate (under optimal conditions) A is diffi-

cult to estimate. The second inequality in (27) implies the bound

A > 3 · 10−7 y−1; we chose the value 10−5 y−1 to accommodate

this inequality.

Let us introduce the dimensionless variables

ũ = E(OsatF)−1L, ṽ = O−1
sat O, x̃ =

√
E/Dx, t̃ = Et,

and the dimensionless parameters

α = AFE−2 and β = CE(AF)−1 .

The parameter α is closely related — approximately equal — to

the combined parameter εΛ of the previous section. It is the

growth rate of the system without diffusion, without oyster mor-

bidity, without taking crowding into account, and with δ = 0.

After dropping the tildes from the notation we obtain

{

ut = uxx − u + v,

vt = α[u(vk + kδ)(1 − v) −βv].

(29)

Here k = 0 or k = 1, corresponding respectively to a hard and a

soft substrate. We recall that we assume 0 ≤ kδ < β < 1, which is

satisfied if the estimated values (28) are approximately correct, in

which case β = 3 · 10−2 ≪ 1.

As for the FK equation in The Fisher-Kolmogorov equation we ex-

pect the long term dynamics to be dominated by travelling waves,

which is confirmed by numerical simulations, see Figure 3.

Our discussion of (29) now follows the lines of that of the FK

equation. For the hard substrate (k = 0) we look at the asymptotic

case β = 0. The trivial state is unstable and we can expect there to

be a one-parameter family of travelling waves, one of which is se-

lected by sufficiently localised initial data. The expected asymp-

totic velocity ch can be calculated explicitly; here we did so by

locating the value of c for which two eigenvalues coincide. Un-

der the condition that c should be real, this value is unique. The

result is depicted in Figure 4 as a function of the parameter α. In

the limits of small and large α the behaviour is

ch ∼
√

27

4
α as α → 0, ch ∼ 4

√

27

4
α1/4 as α → ∞.

Numerical calculation show that the speed ch thus calculated an-

alytically is indeed the selected wave speed.

For the soft substrate (k = 1) the limit case β → 0 also implies

δ → 0 because of the requirement δ < β. However, it is not clear

that this limit is well-defined. Therefore, for the moment we will

use the values β = 3 · 10−2 and δ = 10−2 which follow from (28).

In any case it is impossible to calculate the (unique) wave speed

analytically, so we have to rely on numerical computations. The

asymptotic speed cs is depicted in Figure 4, again as a function of

the parameter α.

Discussion

For α = 10−1, the value corresponding to (28), we have ch = 0.2

and cs = 0.01. These numbers can be interpreted in two ways:

− A speed c = 0.2 in dimensionless variables corresponds to

0.2
√

ED ≈ 2 · 103 meter per year (which seems rather fast).

This confirms that the estimates of (28) may be rather inaccu-

rate, and that α may well differ significantly from 10−1.

− On the other hand, the two numbers ch and cs suggest that
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Figure 3 A solution of (29) with k = 1 , α = 1 , β = 10−2 , δ = 10−3 showing the development towards travelling waves

an oyster bank spreads about twenty times faster on hard sub-

strate than on soft substrate. Despite the inaccuracy in the coef-

ficients α, E, and D, the linear behaviour of ch and cs for small

α (see Figs. 4 and 5) implies that the ratio

ch : cs ≈ 20 : 1

remains valid as long as the parameters are such that the di-

mensionless parameter α = AFE−2 is not too large (roughly

α < 1).

While this biological conclusion is relatively easily drawn, many

mathematical niceties and issues are so far unresolved, partly due

to time limitations. In particular, the asymptotic regime β → 0

for the soft substrate model has not been analysed in depth. Fur-

thermore, the limit of large α would be interesting to study from

a mathematical point of view.

3 Influencing the population by reduction of salinity

The possibility of lowering the salinity of all or part of the East-

ern Scheldt by once again allowing freshwater from local rivers

to drain into the basin has been proposed as a method to hinder

oyster population growth. It should be noted that for raising salin-

ity levels, by for example turning compartments into lagoons by

building more dams, to have an impact on larval production or

mortality, or on oyster mortality, the salinity level would have to

be taken above the tolerance of many other indigenous organisms

that inhabit the bottom of the estuary, collectively called benthics.

Specifically, we have already seen in Completion of the model and

outcome that oyster fecundity is a function of salinity, both because

oysters produce fewer larvae in less salty water and because oys-

ter larvae have higher mortality (proportion of population suc-

cumbing to disease) in less salty water [8]. However, other species

in the Eastern Scheldt are also sensitive to salinity levels, so for ex-

ample a stratagem involving closing the storm surge barrier and

flooding the Eastern Scheldt with freshwater would doubtlessly

remove the vast majority of oysters, but would also engender an

ecological disaster. Furthermore, since the freshwater dams were

constructed between 1964 and 1987, agriculture upstream of the

dams has become dependent on the current river conditions. This

is in addition to the still pertinent reason for building the dams:

flood prevention. With these facts in mind, a permanent reopen-

ing of the dams would not be without its side effects. In this sec-

tion we will therefore consider seasonal salinity reduction, or SSR, in

which freshwater would be allowed into the Eastern Scheldt only

in a period coinciding with the spawning season and the life span

of the larvae. In addition, and for reasons to be explained below,

SSR will only be considered in the Eastern Compartment (Kom)

of the Eastern Scheldt, see Figure 1. This implies that the dams in

other compartments would remain intact, and the consequences

for agriculture and flood prevention would be minimised.

The Eastern Compartment

The two locations for direct freshwater input are The Northern

and Eastern Compartments. The Kom was chosen for analysis

for several reasons. An important one is the canal which now

runs along the Eastern bank of the compartment. It splits into

two canals: the Schelde-Rijn-kanaal for shipping and the Bathse

Spuikanaal. Both are fed by the Zoommeer, a lake bordering on

the Eastern Scheldt, from which, due to the capacity of the lake, it

is assumed large volumes of water can be pumped. Agriculture

is believed to be more dependent on the rivers which feed the

Figure 4 The wave speed ch on a hard substrate as a function of α (with β = 0)
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Figure 5 The wave speed cs on a soft substrate as a function of α (with β = 3 · 10−2 and

δ = 10−2)

Northern Compartment. Furthermore, the Kom is the shallowest

compartment and has the most regular topography and is thus

amenable to a simplified analysis.

Prior to construction of the Kom dam, RIKZ measured [5] the

influx of freshwater into the Kom at between 50 and 70 cumecs

(cubic metres per second). As a seasonal measure, freshwater

flowing through sluice gates in the dam would not approach these

flow rates, and so the following analysis assumes that the dam re-

mains intact and freshwater is pumped from the canal at a rate of

100 cumecs. The assumption is that the large body of water in the

Zoommeer can provide the extra capacity, and this source can be

replenished in the majority of the year when the pumps are not in

operation.

Effects of lower salinity

The primary trigger for spawning is water temperature [[8],p. 312],

[4]: C. gigas are known to spawn when the temperature exceeds

20oC over a period of several weeks, although they are capable

of spawning at 16oC. With large concentrations of gametes in

the water, spawning tends to be highly coordinated with large

colonies spawning almost in synchrony, to maximise chances of

reproduction. Larvae develop in the water phase for between 15

and 30 days, during which time they are spread by water currents

and diffusion.

The approximately 100 day period covering the spawning and

larval phases is seen as the optimal time to reduce salinity as lar-

vae are more susceptible to reduced salinity levels than oysters.

Oysters can survive water as brackish as 10ppt (parts per thou-

sand of chloride), while larvae will not develop in salinity levels

below 11ppt. This is far below the tolerance of other benthics in

the area so, even if it were possible, lowering the salinity to kill

the oysters and/or larvae is therefore not an option. However,

mortality, oyster respiration rates, and oyster filtration rates are

affected by even a small change in conditions, through the fol-

lowing formulae quoted in [8]:

mortality ∝
S − 8

5.5
,

respiration rate ∝ 1 +

(

Rr − 1

5

)

(20 − S) ,

where

Rr =

{

0.0915T + 1.324 T > 20oC ,

0.007T + 2.099 T < 20oC ,

(30)

and the

filtration rate ∝
S − 10

10
for 10 < S < 20,

where S denotes salinity and T temperature. Note that oysters

are filter feeders, actively pumping water through their feeding

organs and filtering out phytoplankton, bacteria and protozoa for

consumption. Filtration rate can be measured in millilitres per

minute.

Pumping strategies

We introduce a time system modulo 4 (i.e. 4 corresponds to one

day), with 0 at low tide, 1 at the midpoint between low and high

tide, and so on, with each time phase defining a Pumping Period

(PP). We assume that the tidal convection is the primary mixing

mechanism for fresh and salt water in the Kom, and that mix-

ing is highly efficient: in any PP, volumes of fresh and salt wa-

ter are assumed to mix fully. Though this assumption may not

hold in all circumstances, in a relatively shallow basin such as the

Kom, with a tidal difference of approximately 3 metres, tempera-

ture and salinity stratification, for example, are perhaps unlikely.

As discussed above, we normalise on a pumping rate of 100

cumecs by supposing that the capacity of the canal and lake per-

mit this rate of continual supply. Thus a normalised freshwater

input would be 1 unit per PP, and we can generate 24 pumping

strategies within the constraint of a total of 4 units pumped dur-

ing the four PPs. We shall be using the concepts, symbols and

values listed in Table 1, where volume is in units of 106m3, and

salinity is in ppt. The data were provided by RIKZ.

Figure 6 Strategy 0400
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Concept Symbol Value

Time step t —

Volume at t = n Vn —

Global salinity at t = n ρn —

Weighting at t = n Wn Depends on

strategy (mod 4)

Volume of freshwater influx in one PP V f 1.08

Freshwater salinity ρ f 0.5

Sea water salinity ρs 17.5

Water volume in Kom at high tide V 600

Water volume in Kom at low tide v 400

Table 1 Table of concepts and data

The formula we use to calculate the mass of salt in the Kom at

time n + 1 is the following:

Vn+1ρn+1 = Vnρn + Wn+1V f ρ f + (Vn+1 − Vn − Wn+1V f )Mn+1 ,

where

Mn+1 =

{

ρs if Vn+1 − Vn − Wn+1V f > 0.

ρn if Vn+1 − Vn − Wn+1V f < 0.

(31)

The origin of this formula is clear when it is considered term by

term:

Vn+1ρn+1 — mass of salt at t = n + 1;

Vnρn — mass of salt at t = n;

Wn+1V f ρ f — mass of salt from freshwater input;

Vn+1 − Vn − Wn+1V f — saltwater volume change due to

tidal flux.

The two cases in (31) correspond to a rising and falling tide, re-

spectively.

Results and Discussion

Figures 6 & 7 show SSR for two different pumping strategies.

The periodic behaviour apparent here after approximately 40 time

steps is a common feature of the 16 strategies considered, and sug-

gests that pumping need only begin five days before spawning is

predicted to start. In these two examples, the baseline (that is,

mean over tidal periods) salinities after five days are close to each

other in value. Figure 8 shows a comparison in baseline salinities

for all 16 strategies, and it is clear that there is not much to choose

between them in terms of baseline salinities. It is very likely that

each strategy has a different engineering cost depending on the

rate of pumping required, and also that some strategies may place

too great a strain on water supply, and that these may become the

dominant factors in deciding strategy. All strategies recover to the

original baseline salinity of 18 ppt within five days of the fresh-

water supply being cut off.

It should be noted that RIKZ has conducted numerical simula-

tions to study the effects on salinity of a permanent reopening of

the compartment dams in both the Northern Compartment and

the Eastern Compartment ([5]). The long-time maximum baseline

salinity they predicted for the Kom is within the range covered by

our SSR strategies.

We conclude by noting that SSR in the Kom has the advan-

tages of maintaining the flood protection afforded by the com-

partment dams, of providing a short-term, controllable method

to reduce salinity in time for the spawning and larval develop-

ment periods, and of allowing farmed oyster production — with

beds created by “planting” imported young oysters — to contin-

ue in the Kom. There may even be additional benefits associated

with importing water from Lake Zoommeer. These could include

a decrease in water temperature in the Kom, and an increase in

suspended sediment — both of which have negative impacts on

spawning and survival rates, see for example [8]. However, the

scheme has the disadvantage of only lowering salinity by 2–3%

in the Kom which, through the formulae (30), could lead to an in-

crease in larval mortality of approximately 4%. There is also an

associated decrease in oyster filtration rate of around 5%, and an

increase in oyster respiration of around 10% for a summer water

temperature of 22oC.

Consuming less food and utilising more stored energy supplies

will presumably impact on the number of gametes each oyster is

capable of producing, and a quantitative link would be useful.

Less food removed from the water column also implies more is

available for other species.

The above analysis rests on many simplifications of the system,

and any final recommendation on the viability of SSR would have

to rest on a more complete numerical model similar to that used

by RIKZ in their long-time simulations. However, we believe that

the data obtained gives reasonable estimates for the likely effects

of SSR in the Kom, and is seems clear that the salinity cannot be

reduced sufficiently to make this approach feasible.

4 Outline of a large-scale simulation

For a more detailed answer to the questions of the introduction

Figure 7 Strategy 0220
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Figure 8 Mean salinities after five days of pumping are shown, along with bars representing

the minimum and maximum salinities over tidal periods. For clarity, stars represent 4
3 .

we propose the use of large-scale computer simulation to recon-

struct and to predict the development of the oysters.

How are the oyster clusters formed?

In the following we give a sketch of the life cycle of a Japanese

oyster. Most data are taken from the report [7].

1. eggs (in July–August an adult oyster produces between 106

and 108 eggs);

2. larvae (an egg together with sperm develop into a larvae with-

in 1 day);

3. veliger larvae (in one or two days the larvae develop into

veliger larvae (with larval shell));

4. spat (in 15 to 30 days they settle down on appropriate hard

substrate, bigger larvae can crawl quite a distance searching

for appropriate settlement);

5. juvenile oysters develop into adult oysters after one year (esti-

mated mortality of juvenile eastern oysters of more than 64% in

seven days after settlement and more than 86% in one month

after settlement on sub-tidal and inter-tidal plates);

6. death (caused by ageing (it has been estimated a Japanese oys-

ter can live approximately 20 years); the other major causes of

death for oysters in general, such as predators and diseases,

are not substantial in the Eastern Scheldt).

A simplified view of how a new cluster or colony arises is the

following:

The larvae floating in water are displace by diffusion and car-

ried with the tidal movement. Within 3 weeks they have to settle

down on appropriate substrates (hard surface) or otherwise die.

The settling down occurs at the moment when the water is quiet

(e.g., at the turn of a tide, approximately 20 minutes, or in quiet

surroundings). After settling down they will stay there. How-

ever, a large percentage of them die before reaching adulthood.

After one year, the surviving (juvenile) oysters will enter the re-

production system and start to produce gametes and eggs. Oyster

clusters are formed or grow when veliger larvae settle down on

appropriate substrates and survive there.

Diffusion and convection of larvae due to tides

Two main factors determining the place where the larvae settle

down are: 1) advection and diffusion of the tidal flow, and 2) be-

ing at the appropriate place while the water is quiet. If we ignore

the swimming effect of the larvae, the transport of larvae can be

described by the shallow water equations,

∂u

∂t
=− u

∂u

∂x
− v

∂u

∂y
− w

∂u

∂z
+ f v − g

∂ζ
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∂x2
+ νh

∂2u

∂y2
+

∂
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(
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∂u

∂z

)
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∂v

∂x
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∂ζ
∂y

+ νh
∂2v

∂x2
+ νh
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∂
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(

∫ ζ

−d
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(

∫ ζ
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)

and the transport equation:

∂c

∂t
=−

∂uc

∂x
−

∂vc

∂y
−

∂wc

∂z
+

∂
∂x

(

Dh
∂c

∂x

)

+
∂

∂y

(

∂c

∂y

)

+
∂
∂z

(

Dv
∂c

∂z

)

,

where c is the concentration of larvae. Here the triplet (u, v, w) is

the velocity vector, f the Coriolis parameter, g the gravitational

acceleration, and νh/νv and Dh/Dv the horizontal and vertical

viscosities and diffusion, or dispersion, coefficients. The function

ζ is the height of the water surface.

The shallow water equations governing the water movement

can be simulated using the existing simulation model TRIWAQ

(which is in operational use at Rijkswaterstaat [18, 16]). The trans-

port equation can be simulated with a particle simulation model

SIMPAR using the flow velocity data produced by TRIWAQ. A 2-

dimensional version is also in operational use at Rijkswaterstaat

[2, 6], and a 3-dimensional model is currently being developed

at TU Delft [13, 14]). Instead of looking at the concentration of

larvae, we consider the discrete (likely aggregated into groups of

larvae) quantity which corresponds to ‘particles’ carried with the

water movement. For that the continuous transport equation (in

concentration) is transformed into a stochastic partial differential

equation (e.g., Fokker-Planck equation).
With the above simulation models we can determine the posi-

tion of the larvae at the time when the water is quiet. If a larva

happens to be positioned above an appropriate, preferably hard,

surface, then there is a certain chance that it will settle down on

that surface. There exist quite detailed geometry and geological
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data about the Eastern Scheldt which can be used for the sim-

ulation. The geometry data (e.g. depth) are already used by TRI-

WAQ and SIMPAR, but we need additional geological data on the

hardness of surfaces for our simulation of the distribution of the

oysters. The main problem remaining here is to simulate the life

cycle of the oysters in order to determine the speed of population

increase, reconstruction of the past development and prediction

of future development, etc.

Simulation of the life cycle of oysters

In How are the oyster clusters formed? we have described the life cy-

cle of an oyster. In order to obtain detailed information of the

spread of the oysters we need to model the important factors

which affect the development of oysters.

We may divide this life cycle into two major phases:

Phase 1. Each year in July there is a moment when oysters older

than 1 year start to produce eggs and gametes. Then there will be

billions of eggs and gametes or larvae floating in the water, initial-

ly above the spawning oyster colonies. This can be modelled as

multiple sources in the transport model SIMPAR. The number of

larvae produced by a single oyster depends on many factors: size

of the oyster, environmental conditions, etc. (see the discussion in

Diffusion of larvae).

Phase 2. This is the period from the moment of settling down

to developing into an adult oyster. During this period the oyster

will stay in the same place except when they are very young (spat,

juvenile oyster). In the latter case they can be wiped out by strong

currents. We know that a large percentage of juvenile oysters will

die before reaching adulthood.

In general, there are five biotic factors causing oyster death:

disease, predation, competition, developmental complications,

and energy depletion. And there are five abiotic factors: mois-

ture depletion, temperature, salinity, water motion, and oxygen

depletion. Disease and predation are said to have the greatest ef-

fect on oyster populations. However, as mentioned earlier, these

two factors are not significantly present in the Eastern Scheldt.

Which factors contribute predominantly to the death or survival

of the Japanese oysters in this specific Eastern Scheldt remains to

be investigated.

To conclude: many factors for the model of the life cycle of a

Japanese oyster still need to be investigated, part of them can be

determined by experiments, and part of them can be determined

or made more precise by comparing simulation results with the

past observational data.

A Appendix: derivation of (13)

Consider Equation (3) where u is given by (11). Let us rescale the

space and time variables as

(

X Z T
)

=
(

x/L z/h U0t/L
)

,

where L is a characteristic scale in the x-direction. From the shal-
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lowness hypothesis, we assume that h = ǫL, ǫ ≪ 1. Then, intro-

ducing the Peclet number Pe = U0h
D , Equation (3) becomes

ǫPe

(

∂L

∂T
+ v (Z)

∂L

∂X

)

=
∂2L

∂Z2
,

(32)

v (Z) =
3

2

(Z − Z0) (2 − Z − Z0)

(1 − Z0)
2

,

with no-flux boundary conditions at Z = 0, 1:

∂L

∂Z
= 0, Z = 0, 1.

(33)

The presence of the small number ǫPe ≪ 1, suggests seeking a

solution in power series in ǫPe of the form

L = L0 (X, Z, T; τ) +ǫPeL1 (X, Z, T; τ) + . . . ,
(34)

where τ is a slow timescale defined by ǫPeT. Inserting (34) in-

to (32), we find for the leading order term that L0 (X, Z, T; τ) =

L0 (ξ ; τ) ,ξ = X − T, while the coëfficient at order ǫPe is

L1 (X, Z, T; τ) = −
[

(−2 + Z) Z + 2Z0 (X) − Z2
0 (X)

]2

8 [−1 + Z0 (X)]2
∂L0

∂ξ
.

Finally at order (ǫPe)
2, Equation (32) gives

∂2L2

∂Z2
= F

(

∂L0

∂τ
,

∂L0

∂ξ
,

∂2L0

∂ξ2
, Z, Z0

)

.

The form of F is rather complicated and of no real interest so we

do not explicitate it here. The key point is that L2 has to satisfy the

boundary conditions (33) and this yields the solvability condition

∫ 1

0
F

(

∂L0

∂τ
,

∂L0

∂ξ
,

∂2L0

∂ξ2
, Z, Z0

)

dZ = 0.

After integration, we obtain

∂L0

∂τ
=−

24 (1 − Z0)

105

dZ0

dX

∂L0

∂ξ

+

(

1

P2
e

+
2 (1 − Z0)

2

105

)

∂2L0

∂ξ2
,

(35)

which, in terms of the original space and time variables x and t,

is (5). k

Other participants: Dragan Bezanovic, Luca Ferracina, Joris

Geurts van Kessel4 , Belinda Kater4 , Kamyar Malakpoor, Har-

men van der Ploeg, José A. Rodríguez, Bart van de Rotten, Karin

Troost4 , Nienke Valkhoff, and J.F. Williams.

Notes

1 Formerly known as RIVO, presently part
of Animal Sciences Group.

2 Data are hard to obtain since experiments
are difficult and time consuming.

3 As explained in Continuous time depen-
dence for oysters, this equation represents
a smoothed version of the discrete-time

equation of the previous section. Assum-
ing a reference time scale of a year, the co-
efficients D and E in this equation are the
natural coefficients associated with diffu-
sion and death of the larvae, per year. The
coefficient F, on the other hand, should
be viewed as the production of larvae, per

oyster, averaged over a year.

4 We would like to direct special thanks to
the proposers of the problem for the infor-
mation and data provided, the corrections
suggested and the hospitality in Yerseke.
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