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Christiaan Huygens and Contact Geometry

In de tweede helft van de zeventiende eeuw formuleerden Pierre Fer-

mat en Christiaan Huygens hun theorieën over de optica. Uitgangspunt

voor Fermat was het gegeven dat een lichtstraal de snelste weg zoekt,

en voor Huygens dat elk punt van een golffront opgevat kan worden als

een nieuwe lichtbron. Hansjörg Geiges illustreert de beginselen van

de contactmeetkunde aan de hand van deze zogenaamde principes

van Fermat en Huygens en laat met behulp van deze theorie zien dat

de twee principes equivalent zijn.

De tekst is gebaseerd op de inaugurele rede die Hansjörg Geiges

op 24 januari 2003 uitsprak bij de aanvaarding van het ambt van

hoogleraar aan de Universität zu Köln. Daarvoor was hij hoogleraar

meetkunde aan de Universiteit Leiden.

“ —Oui, voilà le géomètre! Et ne crois pas que les géomètres n’aient

pas à s’occuper des femmes!” (Jean Giraudoux, La guerre de Troie

n’aura pas lieu)

For me, the most evocative painting in the Mauritshuis in Den Haag

has always been Het meisje met de parel, even before a novel and a

film turned the girl into something of a pop icon. However, that mu-

seum is the home to another portrait that cannot fail to attract the

attention of any scientifically interested visitor, and one where the

identity of (some of) the portrayed, like in Vermeer’s famous painting,

is shrouded in mystery. I am speaking of Adriaan Hanneman’s Portret

van Constantijn Huygens en zijn kinderen (figure 1). This family por-

trait depicts C. Huygens (1596–1687) —“the most versatile and the last

of the true Dutch Renaissance virtuosos” (Encyclopaedia Britannica),

whose most notable contributions lay in the fields of diplomacy and

poetry,— together with his five children. Among them is Christiaan Huy-

gens (1629–1695), who would go on to become one of the most famous

mathematical scientists of his time, later to be characterised as “ein

Junggeselle von hervorragendem Charakter und außergewöhnlicher In-

telligenz” [11]. While I expound some of the mathematical themes of

Christiaan Huygens’ life and hint at their relation to modern contact

geometry, I leave the reader to ponder the question just which of the

four boys in the family portrait shows that intellectual promise, a ques-

tion to which I shall return at the end of this article.

An inaugural lecture is not only an opportunity to present one’s field

of research to a wider public, it also allows one to reflect on the stand-

ing of mathematics within the general intellectual discourse. On an

earlier occasion of this kind [5] I have not been overly optimistic in this

respect, and I have no reason to qualify anything I said there. Still,

it is worth remembering that there have been even more precarious

times for mathematics. In [4] we read that “The new Savilian profes-

sor [Baden Powell, Savilian professor of geometry at the University of

Oxford 1827–1860] was shocked and dismayed by the low esteem ac-

corded to mathematics in the University. He had been advised not

to give an inaugural lecture on arrival, as he would almost surely not

attract an audience.”

Figure 1 Adriaan Hanneman’s Portret van Constantijn Huygens en zijn kinderen. Among
them is Christiaan (see page 123).
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Disclaimer

A foreigner, even one who has lived in the Netherlands for several years,

is obviously carrying tulips to Amsterdam (or whatever the appropriate

turn of phrase might be) when writing about Christiaan Huygens in a

Dutch journal. Then again, from a visit to the Huygensmuseum Hofwijck

in Voorburg near Den Haag I gathered that in the Netherlands the fame

of Constantijn Huygens tends to outshine that of his second-eldest son.

Be that as it may, this article is intended merely as a relatively faithful

record of my inaugural lecture (with some mathematical details added)

and entirely devoid of scholarly aspirations.

The best slide for twins

Imagine that you are trying to connect two pointsA,B in a vertical plane

by a slide along which a point mass M will move, solely under the in-

fluence of gravitation, in shortest time from A to B (see figure 2). This

is the famous brachistochrone problem (from Greek βράχιστoς =

shortest, χρóνoς = time), posed by Johann Bernoulli in 1696 in rather

more erudite language: “Datis in plano verticali duobus punctis A & B

assignare Mobili M viam AMB, per quam gravitate sua descendens &

moveri incipiens a punctoA, brevissimo tempore perveniat ad alterum

punctum B.” (Problema novum ad cujus solutionem Mathematici invi-

tantur, Joh. Op. XXX (pars), [3], p. 212).

Figure 2 Imagine that you are trying to connect two points A,B in a vertical plane by a
slide along which a point massM will move, solely under the influence of gravitation, in
shortest time from A to B.

A related problem is to find the slide connecting the points A and B in

such a way that one will reach the end-point B of the slide in the same

amount of time, no matter where on the slide one starts. This is known

as the tautochrone problem.

Rather surprisingly, it turns out that the solution to either question

is one and the same curve, the so-called cycloid. This is obviously the

best slide a doting uncle can build for his twin nephews: not only will

their slide be faster than anybody else’s; if both of them start at the

same time at any two points of the slide, they will reach the bottom of

the slide simultaneously. This gives them the chance and the time to

fight over other things.

In 1697 Jacob Bernoulli responded to the challenge set by his broth-

er concerning the brachistochrone with a paper bearing the beautiful

title Solutio Problematum Fraternorum, una cum Propositione recip-

roca aliorum, Jac. Op. LXXV ([3], p. 271–282). Johann’s own solution

appeared the same year (Joh. Op. XXXVII, [3], p. 263–270). The tau-

tochrone problem had been solved by Christiaan Huygens as early

as 1657, but the solution was not published until 1673 in his famous

Horologium Oscillatorium [9], cf. [16].

The cycloid

The cycloid is the locus traced out by a point on the rim of a circle

as that circle rolls along a straight line (figure 3). Choose cartesian

coordinates in the plane such that the circle rolls along the x–axis,

with the point on the rim initially lying at the origin (0,0). Let a be the

radius of the circle. When the circle has turned through an angle t, its

centre lies at the point (at,a), and so a parametric description of the

cycloid is given by

x(t) = a(t − sin t), y(t) = a(1− cos t).

h
tt

p
:/

/m
at

h
w

o
rl
d
.w

o
lf
ra

m
.c

o
m

Figure 3 The cycloid

The cycloidal slide is obtained by turning this curve upside down. It is

convenient to effect this by reversing the direction of they–coordinate,

while keeping the parametric equations unchanged. Given two points

A = (0,0) and B = (b1, b2) with b1 > 0, b2 ≥ 0 in the xy–plane, there

is a unique radius a and angle tB ∈ (0,2π ] such that A = (x(0), y(0))

and B = (x(tB ), y(tB )). There are various ways to see this, the following

is due to Isaac Newton, (cf. [3], p. 43): Draw any cycloid starting at A,

and let Q be its intersection with the straight line segment AB. Then

expand the cycloid by a factorAB/AQ. (Here and below I use the same

symbolAB to denote a curve or line segment between two pointsA,B,

as well as the length of that segment, provided the meaning is clear

from the context.)

For some of the reasonings below I shall assume implicitly that

tB ≤ π , so that the cycloidal segment connecting A and B does not

have any upward slope; this is equivalent to requiring b2 ≥ 2b1/π .

The brachistochrone and tautochrone problems were two of the

most challenging geometric questions of 17th century mathematics,

attracting the attention of the most famous (and cantankerous) math-

ematicians of that time, including the Marquis de L’Hospital, Leibniz,

and Newton. As a result, these problems were the source of acrimo-

nious battles over priority — the publications of the Bernoulli brothers

on this topic have even been published in a collection bearing the title

Streitschriften [3]. This was not the only occasion when the cycloid was

the object of desire in a mathematical quarrel, and so this curve has

often been dubbed the ‘Helen of Geometers’.

The following allusion to the tautochronous property of the cycloid

in Herman Melville’s Moby Dick ([13], Chapter 96, The Try-Works) shows

that there were happy times when the beauty of mathematics had to

some degree entered popular consciousness: “[The try-pot] [a pot for

trying oil from blubber -HG] is a place also for profound mathematical

meditation. It was in the left hand try-pot of the Pequod [Captain

Ahab’s ship, named after an Indian people -HG], with the soapstone

diligently circling around me, that I was first indirectly struck by the

remarkable fact, that in geometry all bodies gliding along the cycloid,

my soapstone for example, will descend from any point in precisely the

same time.”

The cycloidal pendulum

Besides the discovery of the true shape of Saturn’s rings and one of

its moons, namely Titan, Christiaan Huygens’ most important scientific

contributions are his theory of light, based on what has become known

as Huygens’ principle (discussed in the next section), and his develop-

ment of a pendulum clock starting from his proof of the tautochronous
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property of the cycloid.

At the time of Huygens, pendulum clocks were built (as they usually

are today) with a simple circular pendulum. The problem with such a

pendulum is that its frequency depends on the amplitude of the oscil-

lation. With regard to the pendulum clock in your living room this is no

cause for concern, since there the amplitude stays practically constant.

But arguably the most outstanding problem of applied mathematics at

that time was to build a clock that was also reliable in more adverse

conditions, say on a ship sailing through gale force winds. Why are

such accurate clocks important?

As is wryly remarked in the introduction to the lavishly illustrated

proceedings of the Longitude Symposium [2], “Travelling overseas, we

now complain when delayed for an hour: we have forgotten that once

there were problems finding continents”. Indeed, how was it possible

to determine your exact position at sea (or anywhere else, for that

matter), prior to the days of satellite-based Global Positioning Systems?

Mathematically the answer is simple (at least on a sunny day): Observe

when the sun reaches its highest elevation. This will be noon local time.

Moreover, the angleα of elevation will give you the latitude: If the axis

of the earth’s rotation were orthogonal to the plane in which the earth

moves around the sun, that latitude would simply be 90◦ −α. In order

to take the tilting of the earth’s axis by 23◦ into account, one needs to

adjust this by an angle that depends on the date, varying between 0◦

at the equinoxes and ±23◦ at the solstices.

The longitude, on the other hand, cannot be determined from this

observational data alone. Indeed, the actual value of the longitude

at any given point is a matter of convention. The fact that the zero

meridian passes through Greenwich is a consequence of the scientific

achievements and geopolitical power of the British, not astronomy.

However, if you keep a clock with you that shows accurate Greenwich

time, and you bear in mind that the earth rotates by a full 360◦ in 24

hours, then multiplying the difference between your local time and that

shown on the clock by 15◦/h will determine your longitude relative to

that of Greenwich.

All the practical problems involved in building such an accurate

clock were first solved by John Harrison in 1759: cf. [2] and the thrilling

account of Harrison’s life in [14].

From a mathematical point of view, the question addressed by Huy-

gens concerned the most interesting aspect of these practical prob-

lems: Is it possible to devise a pendulum whose frequency does not

depend on the amplitude of the pendular motion? The hardest part

of this question is to find the tautochronous curve, along which the

pendulum mass should be forced to move. This Huygens established

to be the cycloid. He further observed that one could make the pen-

dulum move along a cycloid by restricting the swinging motion of the

pendulum between appropriately shaped plates.

Take a look at figure 4 (kindly provided by Manfred Lehn). Here

AB is (half) a cycloid, along which the pendulum massM, attached to

the string B′M, is supposed to move. This means that we require this

string to be tangent to the curve B′A at the point M′, and the length

B′M to equal B′A, the length of the pendulum. In other words, the

cycloidAB is given by tightly unrolling (whence the title of [16]) a string

from the curve B′A. If the pendulum is forced to swing between two

plates shaped like B′A, then the pendulum mass will move along the

cycloid, as desired.

Such a curve AB obtained by unrolling a string from a curve B′A is

called the involute of B′A (and B′A the evolute of AB). So the second

question faced by Huygens was: Which curve has the cycloid as its

involute? Rather miraculously, the answer is again: the cycloid. Here

Figure 4 The construction of Huygens amplitude invariant pendulum. The curve AB is

(half) a cycloid, along which the pendulum massM , attached to the string B′M , is sup-
posed to move.

is the geometric proof: Let AB be the cycloid traced out by the point

M as the lower circle in figure 4 rolls to the left along the horizontal

line between the two circles (withM = A at t = 0), and B′A the cycloid

traced out by the point M′ as the upper circle rolls to the right along

a horizontal line through B′ (with M′ = B′ at t = 0). With the defining

equations for the cycloids as in the previous section, the situation

shown in the figure corresponds to t = t0 for some t0 ∈ [0, π ] for the

lower circle and t = π − t0 for the upper circle.

The velocity (with respect to the parameter t) of the point M can

be split into two vector components of length a: one in horizontal

direction, corresponding to the speed of the centre of the circle, and

one in the direction tangent to the circle, corresponding to the angular

speed of the rolling circle. An elementary consideration shows that the

lineMP bisects the angle between these two directions, and so this line

constitutes the tangent line to the cycloid at M. Analogously, the line

M′P ′ is the tangent line to the cycloid B′A at M′. By symmetry of the

construction, the lineM′P ′ passes throughM. In order to conclude that

AB is the involute of B′A it therefore suffices to show that the length

of the cycloidal segment M′A equals the length of the line segment

M′M. Also observe that, by the theorem of Thales, the line M′M is

orthogonal to the tangent lineMP atM ; this is a general phenomenon

for an involute.

The angle ∠MOP ′ equals t0, hence ∠MPP ′ = t0/2. This yields

M′M = 2P ′M = 4a sin
t0
2
.

On the other hand, from the defining equations of the cycloid we have

ẋ2
+ ẏ2

= a2(1− cos t)2 + a2 sin2 t = 4a2 sin2 t

2
,

whence

M′A =

∫ π

π−t0
2a sin

t

2
dt = 4a cos

π − t0
2

= 4a sin
t0
2
,

that is,M′M = M′A, which was to be shown.
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Figure 5 The construction plan from Huygens’ Horologium Oscillatorium , with the cycloidal
plates indicated by ‘FIG. II’

Huygens did not stop at these theoretical considerations, but proceed-

ed to construct an actual pendulum clock with cycloidal plates. The

construction plan from Huygens’ Horologium Oscillatorium, with the

cycloidal plates indicated by ‘FIG. II’, is shown in figure 5. A replica of

this clock can be seen in the Huygensmuseum Hofwijck.

Geometric optics

Either of the following fundamental principles can be used to explain

the propagation of light:

Fermat’s Principle (1658). Any ray of light follows the path of shortest

time.

Huygens’ Principle (1690). Every point of a wave front is the source of

an elementary wave. The wave front at a later time is given as the

envelope of these elementary waves [10].

Figure 6 Fermat’s principle versus Huygens’ principle

The simplest possible example is the propagation of light in a homo-

geneous and isotropic medium. Here we expect the rays of light to

be straight lines. Figure 6 illustrates that this is indeed what the two

principles predict. We merely need to observe that, in a homogeneous

and isotropic medium, the curves of shortest time are the same as geo-

metrically shortest curves, i.e. straight lines, and elementary waves are

circular waves around their centre.

Whereas Fermat’s principle can only be justified as an instance of

nature’s parsimony, cf. [8], Huygens’ principle can be explained mech-

anistically from a particle theory of light, see figure 7.

Figure 7 Explanation of Huygens’ principle from the particle theory of light

To illustrate the power of these principles, here are two further exam-

ples. The first is the law of reflection, which states that the angle of

incidence equals the angle of reflection. Figure 8 shows how this fol-

lows from Fermat’s principle: The path connecting A and B has the

same length as the corresponding one connecting A and the mirror

image B′ of B, and for the latter the shortest (and hence quickest) path

is given by the straight line.

Figure 8 The law of reflection, by the Fermat principle

The explanation of the law of reflection from Huygens’ principle is il-

lustrated in figure 9.

Figure 9 The law of reflection, by the Huygens principle

As a final application of the two principles, we turn to the law of refrac-

tion, also known as Snell’s law after the Dutch astronomer and math-

ematician Willebrord van Roijen Snell (1580–1628), whose latinised

name Snellius now adorns the Mathematical Institute of the Univer-

siteit Leiden. Snell discovered this law in 1621; in print it appears for

instance in Huygens’ Traité de la lumière, with proofs based on either

of the two principles. The law states that as a ray of light crosses the

boundary between two (homogeneous and isotropic) optical media,

the angle of incidenceα1 (measured relative to a line perpendicular to

the separating surface) and the angle of refraction α2 (see figure 10)

are related by
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Figure 10 Snell’s law, derived from Fermat’s principle

sinα1

v1

=
sinα2

v2

,

where v1 and v2 denote the speed of light in the respective medium.

Figure 10 shows how to derive Snell’s law from Fermat’s principle.

The path from A to B via P (drawn in bold) is supposed to be the one

satisfying Snell’s law. We need to show that it takes longer to travel

along any other broken path from A to B via some Q different from P .

We compute

PP ′

v2

=
PQ sinα2

v2

=
PQ sinα1

v1

=
QQ′

v1

,

that is, t(PP ′) = t(QQ′), where t(·) denotes the amount of time it takes

to travel along a certain line segment in the corresponding medium.

Therefore

t(AQ) + t(QB) > t(A′Q) + t(P ′B) = t(A′Q′) + t(Q′Q) + t(P ′B)

= t(AP ) + t(PP ′) + t(P ′B) = t(AP ) + t(PB).

Figure 11 indicates how Snell’s law is implied by Huygens’ principle.

Figure 11 Snell’s law, derived from Huygens’ principle

Johann Bernoulli’s solution of the brachistochrone problem

Jacob Bernoulli, in his response (cited above) to the fraternal challenge,

developed a general method for dealing with problems of this kind,

nowadays known as the calculus of variations. In the present section

we shall be concerned with Johann’s own solution, which nicely relates

to the concepts of geometric optics discussed above.

When the mass M has reached a point (x,y) on the slide from

A = (0,0) to B, with the y–coordinate oriented downwards, its speed

has reached, under the influence of gravitation, the value v =
√

2gy,

where g = 9.81m/s2 denotes the gravitational acceleration near the

surface of the Earth. In order to determine which path the point M

should follow so as to take the shortest time fromA to B, we discretise

the problem.

Imagine that the region between A and B is layered into finitely many

horizontal slices, in each of which the speed of M stays constant. In

particular, M should follow a straight line in each layer. As M passes

from the ith to the (i + 1)st layer, the angle αi of incidence and αi+1

of ‘refraction’ should be related to the respective speeds vi, vi+1 by

Snell’s law

vi+1

sinαi+1

=
vi

sinαi
,

for the fact that Snell’s law is an instance of Fermat’s principle guaran-

tees this to yield the quickest path (figure 12).

Figure 12 A region layered into finitely many horizontal slices

As we let the number of slices tend to infinity, the equation describing

the brachistochrone becomes

v

sinα
= c

for some constant c, see figure 13. Bravely computing with infinitesi-

mals, we have sinα = dx/

√

dx2 + dy2, whence

√

1 +
(dy

dx

)2
·
√

2gy = c.

This can be written as

dx

dy
=

√

y

2a−y

with a = c2/4g. Substitute y(t) = 2a sin2 t
2

= a(1− cos t). Then

dx

dt
=
dx

dy
·
dy

dt
=

√

1− cos t

1 + cos t
· a sin t = 2a sin2 t

2
= y,

hence (with x(0) = 0) x(t) = a(t − sin t) “ex qua concludo: curvam

Brachystochronam esse Cycloidem vulgarem” ([3], p. 266).

Figure 13 The limit case of figure 12, as the number of slices tends to infinity
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This is as good a point as any to recommend the wonderful textbook [7].

It contains an extensive discussion of both the brachistochrone and

tautochrone problem in their historical context, and many other histor-

ical gems that so sadly are missing from our usual introductory courses

on analysis, which tend to suffer from the dictate of efficiency and the

haste to ‘cover material’.

Elementary contact geometry

Here at last we come to the second part of this article’s title. My modest

aim is to convey a couple of basic notions of contact geometry and to

show how they relate to some of the ideas discussed above. In doing

so, I am aware of W. Thurston’s warning that “one person’s clear mental

image is another person’s intimidation” [15].

One of the fundamental notions of contact geometry is the so-called

space of (oriented) contact elements of a given manifold. Let us first

consider a concrete example (see figure 14).

Figure 14 An oriented contact element to the 2–plane R2

An oriented contact element to the 2–plane R2 at some point p0 ∈ R2

is simply an oriented line passing through the point p0. Such a line

is uniquely determined by p0 and an angle θ0. We can think of this

angle θ0 as an element of the unit circle S1, so the space of all contact

elements of R2 can be identified with the product R2 × S1.

Let ∂x , ∂y denote the unit vectors in the coordinate directions of R2

at any given point (x0, y0, θ0) ∈ R2 × S1. They can be thought of as

the velocity vectors of the curves

x 7−→ (x0 + x,y0, θ0),

y 7−→ (x0, y0 +y,θ0).

Similarly, we can speak of the velocity vector ∂θ of the curve

θ 7−→ (x0, y0, θ0 + θ).

In the local picture of figure 14, where θ is measured along a real

axis, this is once again simply the unit vector in the direction of the

θ–coordinate.

We now specify a 2–plane ξ(p0,θ0) at any point (p0, θ0) ∈ R2×S1 as

the plane spanned by the vectors

∂θ and cosθ0 ∂x + sinθ0 ∂y .

Alternatively, this plane is determined by the condition that it contain

∂θ and that it project to the contact element at p0 defined by θ0. The

collection of all these 2–planes is called the natural contact structure

on the space of contact elements of R2.

This probably sounds esoteric or banal, depending on your education.

It is unavoidable that at this point I shall have to assume a certain

level of mathematical literacy. But I make no apology for continuing,

whenever possible, also to address those who are beginning to feel

just a little intimidated. The space of contact elements of R2 in fact

has a very natural interpretation as a space of physical configurations.

If you want to describe the position of a wheel of your bicycle, say, you

should describe its position p and its direction, given by θ. Moreover,

instantaneously the wheel can only roll in the direction in which it

points at any given moment, so the motion of the wheel, interpreted

as a curve in the 3–dimensional space of contact elements, will be

tangent to the natural contact structure.

The next concept we want to introduce is that of a contact transfor-

mation. Such transformations play an important role in the geometric

theory of differential equations. Most physicists first encounter them

in their special incarnation as so-called Legendre transformations. For

our purposes, we can define a contact transformation as a diffeomor-

phism φ of the space of contact elements R2 × S1 with the property

that if a curve w passes through a point (p,θ) and is tangent to the

2–plane ξ(p,θ) at that point, then the image curveφ◦w will be tangent

to ξφ(p,θ) atφ(p,θ).

Here is an example of a whole family of contact transformations: For

t ∈ R, define

φt : R2 × S1 −→ R2 × S1

(x,y,θ) 7−→ (x − t sinθ,y + t cosθ,θ).

In order to verify that these are indeed contact transformations, con-

sider a parametrised curve

s 7−→ w(s) = (x(s), y(s), θ(s)) ∈ R2 × S1,

s ∈ (−ε, ε), for some small ε > 0 say, with tangent vector

w′(0) = (x′(0), y′(0), θ′(0))

assumed to lie inξw(0). Withπ : R2×S1 → R2 denoting the natural pro-

jection, this is equivalent to saying that the tangent vector (x′(0), y′(0))

of the projected curve π ◦ w at the point (x(0), y(0)) lies in the line

determined by θ(0), i.e. is a multiple of (cosθ(0), sinθ(0)).

The transformed curve is

φt ◦w(s) = (x(s)− t sinθ(s), y(s) + t cosθ(s), θ(s)).

Notice that the θ–coordinate remains unchanged under φt . We com-

pute

d

ds
(φt ◦w)(s) = (x′(s)− tθ′(s) cosθ(s), y′(s)− tθ′(s) sinθ(s), θ′(s))

and observe that the R2–component of this vector at s = 0 does again

lie in the line determined by θ(0).

This family φt of transformations is called the geodesic flow of R2.

Here is why: In a general Riemannian manifold, geodesics are locally

shortest curves. In R2 (with its euclidean metric), therefore, geodesics

are simply the straight lines. Given a point p ∈ R2 and a direction

θ ∈ S1 defining a contact element, let ℓp,θ be the unique oriented

line in R2 passing through the point p and positively orthogonal to the
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contact element θ. This line is parametrised by

t 7−→ p + t(− sinθ, cosθ), t ∈ R.

Lo and behold, this is the same as t 7→ π ◦φt (p,θ). The θ–component

of φt (p,θ) encodes the direction orthogonal to this geodesic; in our

case this component stays constant.

Great, I hear you say, but what does all that have to do with Huygens?

Well, it turns out that we are but one simple step away from proving,

with the help of contact geometry, the equivalence of the principles of

Fermat and Huygens.

Let f be a wave front in R2, thought of as a parametrised curve

s 7→ (x(s), y(s)), s ∈ (−ε, ε). For simplicity, we assume this to be

regular, i.e.

f
′
(s) = (x′(s), y′(s)) 6= (0,0)

for all s ∈ (−ε, ε). Such a wave front lifts to a unique curve

s 7−→ f (s) = (x(s), y(s), θ(s))

in the space of contact elements subject to the requirement that

(x′(s), y′(s)) be a positive multiple of (cosθ(s), sinθ(s)); this lift will

be tangent to the natural contact structure. Fermat’s principle says

that light propagates along the geodesic rays (i.e. straight lines) or-

thogonal to the wave front f , which translates into saying that the

wave front at some later time t is given by π ◦φt ◦ f .

Next consider the curve

h : θ 7−→ (x(0), y(0), θ).

This is simply the circle worth of all contact elements at the point

π ◦h ≡ (x(0), y(0)). Under the geodesic flow and projected to R2, this

becomes an elementary wave in the sense of Huygens: for each fixed

t ∈ R the curve

θ 7−→ π ◦φt ◦ h(θ) = (x(0), y(0)) + t(− sinθ, cosθ)

is a circle of radius t centred at (x(0), y(0).

The curvesh and f are both tangent to ξf (0) at the point f (0) = h(θ(0)).

Sinceφt is a contact transformation, the transformed curvesφt◦h and

φt ◦ f will be tangent to ξφt◦f (0) at φt ◦ f (0). Then, by the definition

of the natural contact structure, the transformed wave front π ◦φt ◦ f

and the elementary wave π ◦φt ◦ h will be tangent to each other at

the point π ◦φt ◦ f (0) — this is Huygens’ principle.

The general argument is entirely analogous: A contact element on

a Riemannian manifold is a (cooriented) tangent hyperplane field. The

space of all these contact elements once again carries a natural contact

structure. A geodesic is uniquely determined by an initial point and a

direction positively orthogonal to a contact element at that point. Like

in the special case of R2 one can show that the geodesic flow preserves

the natural contact structure on the space of contact elements, and

this translates into the equivalence of the two principles of geometric

optics. A quick proof of this general case is given in [6]; full details

of that proof are meant to appear in a forthcoming book on contact

topology.

The family portrait

It remains to identify the young Christiaan Huygens in Hanneman’s

family portrait. In the biography [1] (from an aptly named publishing

company!), a whole chapter is devoted to this question, so we seem to

be in muddy waters.

Since Christiaan was the second-eldest son, there is actually only a

choice between the two boys at the top. My first guess was that Christi-

aan is the one on the left, who has arguably the most striking face. This

intuitive feeling is confirmed by the catalogue of the Mauritshuis ([12],

p. 67) and by the afterword in [10]. Alas, it is wrong.

It appears that the confusion was started by an engraving of the

printing carried out for a late 19th century edition of the collected works

of Christiaan Huygens. Here Christiaan’s name is placed at the upper

left, contradicting an earlier engraving; the original painting does not

associate names with the four boys. However, family iconography of

the time demanded that the eldest son be placed to his father’s right,

i.e., on the left side of the portrait. This identification of the eldest

brother Constantijn as the boy on the upper left, and thus Christiaan

as the one on the right, seems to be confirmed by a comparison of the

painting with other portraits from the same period. k
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