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Study groups with industry are meetings where people from industry

meet mathematicians to tackle industrial problems. The first such

meeting was held in the sixties at the University of Oxford. Nowadays

study groups take place all over the world. The 45th European Study

Group with Industry took place in February 2003 at the Lorentz Center

of Leiden University.

One of the problems for the study group was brought in by Philips.

This company is trying to adapt ink-jet technology to print light-

emitting polymer displays. The polymers involved show visco-elastic

behaviour very different from normal inks. The question posed to the

study group was to model the visco-elastic behaviour of the jetted

polymer solution to obtain information about the droplet formation

of the polymer liquid.

Light-emitting polymer display (LED) is a new technology. LED

devices do not have viewing angle restriction, which gives them a

major advantage over the existing liquid crystal displays (LCDs).

The active material in the display is a very thin semi-conducting

polymer layer of order 100 nanometer. To obtain these thin lay-

ers a small concentration of the polymer is dissolved in a suitable

solvent. Different colours can be obtained with different poly-

mers. To make a full colour display, red, green and blue polymer

solutions have to be applied in pixels of typically 66 × 200 mi-

cron. The method with which the polymer solutions are applied

is by means of ink-jet printing. Individual droplets are printed in

the pixels and by evaporating the solvent the final polymer lay-

er is obtained. The polymers have high molecular weights which

cause the droplet formation to be quite different from an ordinary

Newtonian liquid; that is, a long filament may form. This can give

rise to a decrease in the placement accuracy of the droplets on the

substrate. Therefore, when predicting the behaviour of a droplet

in an ink-jet printer the material parameters of the liquid are very

important.

The viscosity of an ink is an important parameter for the

droplet formation in an ink-jet head. Standard in the ink-jet print-

ing world is to measure the shear viscosity of the liquid. Most

common inks are Newtonian liquids and the shear viscosity is a

suitable characterization parameter. For inks that are solutions of

a high molecular weight polymer in small concentrations in a sol-

vent, the situation is quite different. It has been observed in the

laboratory that the droplet formation of these solutions is consid-

erably different from the predictions based on the shear viscosity

alone, where it is assumed that the solution is a pure Newtonian

liquid. For example, more energy is needed to eject the droplet

and some droplets are formed with a filament, which can break

up into satellite droplets. When these solutions are measured in a

shear rheometer, the viscosity is shown to be a constant and is in

the proper regime for ink-jet printing. This suggests that the fila-

ment formation during the ink-jet printing is caused by the differ-

ent behaviour in the elongational viscosity. This is not surprising

since it is well known (see for example [11] and references therein)

that a small concentration of a high molecular weight polymer in

a solvent can increase the elongational viscosity substantially.

Since the shear viscosity cannot be used to characterize the

inks, we need to obtain the elongational viscosity in order to make

reasonable predictions. The problem is that the elongational vis-

cosity is not easy to measure, especially in the range of deforma-

tion rate of ink-jet printing, in contrast to the shear viscosity. On

the other hand, the experimental results indicate that the tail be-

haviour is strongly affected by the properties of the polymer. This
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Figure 1 Above: a simple experiment of the filament formation of an ink-jet printed
droplet, here the filament formation is modest. Below: the same experiment as above, but
now the filament formation is extreme.

suggests that if a mathematical model of the non-Newtonian flu-

id can be constructed, then the model can be calibrated using the

tail-length or other information of the droplets by varying the op-

erational conditions. This approach can be viewed as an indirect

means to obtain information on the elongational viscosity. Ob-

viously, the same model can also be used to study the dynamic

process of droplet formation. In this article, we describe some pre-

liminary results based on a one-dimensional model for the elon-

gational viscosity and for the dynamics of droplet formation.

Mathematical Model

The problem of droplet formation consists of two stages: the ejec-

tion of liquid from the nozzle and the breakup liquid filament. For

an ink-jet printer, this is achieved using a large number of minia-

ture valveless pumps. The pumps are actuated electronically, by

locally heating elements of the liquid to high temperatures. Vapor

bubbles are created and grow explosively at desirable locations

inside pumps. As a result, they push a small amount of liquid at

high velocity through nozzles. To completely understand the for-

mation of an ink-jet droplet, detailed two (possibly three) dimen-

sional hydrodynamics models are needed. However, the exit flow

of general non-Newtonian fluid is still far from being understood

and simple models are used instead. For example, the process has

been investigated using an energy argument while the behaviour

of the pumps is modeled as a Helmholtz resonator in [5]. Since

our main purpose is to study the non-Newtonian effects on the

filament (tail) of the droplet, we will not investigate the exit flow

in detail. Instead, we will follow the energy argument in [5] for

the formation of droplets.

The breakup of a liquid jet in the context of Newtonian flu-

id has been well-studied by several researchers based on (one-

dimensional) thin jet approximation. Such models predict the

breakup of jets in finite time, described by a similarity solution [7–

8]. It is well-known that visco-elasticity and other non-Newtonian

effects delay the breakup by suppressing surface tension [4, 9–10,

12]. Nevertheless, pinch-off may still occur due to the surface ten-

sion force, which becomes dominant when the radius of the liquid

jet is small. The problem being investigated here, however, has

some distinct features. The ink-jet is driven by thermal expan-

sion of the liquid (or a piezoelectric mechanism) with a period on

the order of 20 micro-seconds [5]. Therefore, the breakup of the

ink-jet may be caused by the highly oscillatory nature of the flow

(at least initially). Our main objective is to set up a mathemati-

cal model and investigate numerically the combined effect of the

high frequency transient flow and the non-Newtonian nature of

the polymer solution.

Initial droplet formation

In order to provide the initial condition for the evolution of the

droplet tail, we use a simple energy argument to obtain the time

t0 when the droplet forms. The basic argument is based on en-

ergy consideration, following that of [5]. We assume that before

the droplet forms, the fluid simply flows out of the nozzle as a

liquid cylinder with radius Rn. At t0, the droplet forms and it

moves with the fluid velocity at the nozzle, V(t0). Thus, we can

estimate the total kinetic energy flowing out of the nozzle during

the period 0 ≤ t ≤ t0 as

Tk.e. =
∫ t0

0

1

2
ρAV3dt

where A is the nozzle cross section area, ρ is the fluid density and

V is the fluid velocity at the nozzle exit, assumed to be given. The

total kinetic energy associated with the liquid cylinder at t0 is

Tk.e.l. =
∫ t0

0

1

2
ρAVdtV2(t0).

The total surface energy associated with the liquid cylinder at t0

is

Ts.e.l. = σ2πRn

∫ t0

0
Vdt

where σ is the surface tension coefficient between the liquid

and the air. We assume that the energy dissipation due to viscos-

ity is negligible, then the drop forms at t0 when Tk.e.l. + Ts.e.l. is

about to exceed Tk.e., i.e., the total kinetic energy is not sufficient

to maintain the growth of the liquid cylinder out of the nozzle

beyond t0.

In addition, we assume that after the droplet forms, it immedi-

ately takes a spherical shape and is connected with the nozzle by

a tail, in the shape of a cylinder. The evolution and the eventual

breakup of the tail is the subject of the rest of this article.

Tail evolution

The governing equations for the fluid inside the tail of the droplet

are the conservation of momentum and incompressibility equa-

tions

ρ

[

∂~v
∂t

+ (~v · ∇)~v

]

= ∇ · T −∇p

∇ ·~v = 0,

where ρ is the density, ~v is the velocity, T is the viscous stress

tensor and p is the pressure. Here we have neglected the effect of

the gravity.

To simplify the discussion, we make the following assump-

tions:

i. The flow is essentially one-dimensional since the tail radius is

small compared to its length L. Furthermore, in general the

variation of the tail radius is also small, except during the ini-

tial stage of droplet formation and when tail breaks up (pinch-

off occurs).

ii. The formation of the initial droplet and subsequently its tail
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are determined by the flow at the exit of the nozzle. We assume

that the flow-rate is a periodic function of time given by

Q = AnV, V = Vne−βt sin(ωt)

where An is the nozzle cross section area, V is the velocity

at the nozzle exit, Vn is the (un-damped) mean velocity at the

nozzle, β is the damping rate due to energy dissipation of the

fluid before it reaches the exit and ω is the frequency of the

oscillation.

iii. We assume that the droplet forms at t0 with an initial tail length

L0. The droplet is assumed to be a sphere with a fixed radius

Rd.

iv. The tail is of cylindrical shape with radius R which is both a

function of time t and spatial coordinate x, measured from the

nozzle. Upon exit from the nozzle, the radius Rc of the fluid

volume contracts and its value is assumed to be known and

equals to the tail radius.

v. Since ω is large, and the break-up of the tail normally occurs

within a short time period after the droplet forms, tempera-

ture effects on both the surface tension coefficient σ and fluid

(elongational) viscosity µ̂ are negligible.

vi. Finally, we assume that the fluid is incompressible with a con-

stant density.

The governing equations for the evolution of the tail and the

motion of the droplet can now be re-written as 1

∂A

∂t
+

∂Au

∂x
= 0,

ρ

(

∂Au

∂t
+

∂Au2

∂x

)

=
∂

∂x

(

Aτ + A
σ

R

)

,

for 0 ≤ x ≤ L(t), where A = 2πR2 is the cross section area of

the tail and τ is the axial viscous stress. For Newtonian fluid, we

have

τ = 3µ
∂u

∂x

where the constant µ is the shear viscosity. For non-Newtonian

fluid, the viscous stress is no longer linearly proportional to the

strain rate. In this study, we use a simple model in the form

τ = µ̂
∂u

∂x
+ kw,

∂w

∂t
=

∂u

∂x
.

Here µ̂ is the elongational viscosity, w is the velocity and rel-

ative displacement of the fluid in the axial direction and k is as-

sumed to be a constant. The governing equations now become

∂A

∂t
+

∂Au

∂x
= 0,

ρ

(

∂Au

∂t
+

∂Au2

∂x

)

=
∂

∂x

(

Aµ̂
∂u

∂x
+ Ak

∫ t

tre f

∂u

∂x
dt + A

σ

R

)

,

where tre f is some reference time.

The boundary conditions for the above equations are normally

required at x = 0 (exit) and x = L (when the tail joins the droplet).

They are

(a) (b) (c)

(d) (e) (f)
Figure 2 Case 1. Power-law elongational viscosity with γ = 1.1. Shape of the tail for
Rs = 1.25Rn and Rc = Rn at (a) t = 0; (b) t = 0.5t0; (c) t = t0; (d) t = 2t0; (e)
t = 3t0; (f) t = 5t0.

x = 0 : R(0, t) = Rc , u(0, t) =
Q

2πR2
c

,

x = L(t) : u(L(t), t) =
dL

dt
, Aµ̂

∂u

∂x
+ Ak

∫ t

tre f

∂u

∂x
dt + A

σ

R
= F.

The motion of the droplet is given by the Newton second law

of motion

F = −ma, a =
d2L

dt2
.

We note that the boundary condition on R is not required at

x = L since the velocity there is positive and the characteristic

goes out of the domain. However, the flow (velocity) at x = 0

may reverse its direction and in that case the radius should not

be given at x = 0. When the velocity is negative, it is likely that

the contact line may move inside the nozzle and the flow pat-

tern becomes quite complicated. Therefore, the artificial bound-

ary condition for R at x = 0 for negative velocity is not physical.

A possible remedy will be to allow the exit boundary to move

with the fluid when the velocity is negative, without considering

a two-dimensional model. This issue is not considered here.

(a) (b) (c)

(d) (e) (f)
Figure 3 Case 2. Power-law elongational viscosity with γ = 1.1. Shape of the tail for
Rs = 1.25Rn and Rc = 0.5Rn at (a) t = 0; (b) t = 0.5t0; (c) t = t0; (d) t = 2t0; (e)
t = 3t0; (f) t = 5t0.
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Numerical Method

We now describe the numerical method used for solving the mo-

del equations derived earlier.

Coordinate transformation

We first define a one-dimensional map

ξ =
x

L(t)
, t = t.

Under this transformation, we have

∂
∂x

=
1

L

∂
∂ξ

,
∂
∂t

=
∂
∂t

−
ξ L̇

L

∂
∂ξ

.

The governing equations become

∂R

∂t
=

ξ L̇ − u

L

∂R

∂ξ
−

R

2L

∂u

∂ξ
,

∂u

∂t
=

ξ L̇

L

∂u

∂ξ
+

1

ρR2L

∂
∂ξ

(

µ̂R2

L

∂u

∂ξ
+ kR2w +σR

)

,

∂w

∂t
=

1

L

∂u

∂ξ
,

where L̇ = dL
dt . The boundary and initial conditions are

= 0 : u(0, t) = V, R(0, t) = Rc ,

= 1 : u = L̇,
µ̂

L

∂u

∂ξ
+ kw +

σ

R
= −

M

πR2
a,

where a = d2 L
dt2 and M = 4πR3

s ρ
3 are the acceleration and the

mass of the droplet, respectively.

Finite difference discretisation

We set up a uniform grid ξ j = jh for j = 0, 1, ..., N with h =

1/N and define U j(t) and Wj(t) as approximations of u(ξ j , t) and

w(x j , t). Applying the finite difference approximation in ξ and

using short-hand notation ˙ for time differentiation yields

Ṙ j = [1 + sign(ξ j L̇ − U j)]
ξ j L̇ − U j

2L

R j+1 − R j

h

+ [1 − sign(ξ j L̇ − U j)]
ξ j L̇ − U j

2L

R j − R j−1

h

−
R j

2L

U j − U j−1

h
,

U̇ j = [1 + sign(L̇)]
ξ j L̇

2L

U j+1 − U j

h

+ [1 − sign(L̇)]
ξ j L̇

2L

U j − U j−1

h

+
1

ρR2
j Lh

(

µ̂ j+1/2R2
j+1/2

L

U j+1 − U j

h

+ kR2
j+1/2Wj+1/2 +σR j+1/2

−
µ̂ j−1/2R2

j−1/2

L

U j − U j−1

h

−kR2
j−1/2Wj−1/2 −σR j−1/2

)

,

Ẇj+1/2 =
1

L

U j+1 − U j

h
, Ẇj−1/2 =

1

L

U j − U j−1

h
,

(a) (b) (c)

(d) (e) (f)
Figure 4 Case 3. Power-law elongational viscosity with γ = 1.5. Shape of the tail for
Rs = 1.25Rn and Rc = Rn at (a) t = 0; (b) t = 0.5t0; (c) t = t0; (d) t = 2t0; (e)
t = 3t0; (f) t = 5t0.

where

µ̂ j+1/2 = µ̂

(

U j+1 − U j

Lh

)

,

µ̂ j−1/2 = µ̂

(

U j − U j−1

Lh

)

,

R j±1/2 =
1

2
(R j + R j±1)

for j = 1, ..., N − 1. Note that the upwind scheme is used

for the convective terms in both continuity and momentum equa-

tions.

At the boundary, we have

U̇0 = Vne−βt[ω cos(ωt) − β sin(ωt)]

and

U̇N = a ≡ −
πR2

N

M

(

µ̂N

L

UN − UN−1

h
+

σ

RN

)

,

L̇ = UN .

Time integration and initial conditions

The semi-discretisation using finite difference approximation re-

sults in a system of (non-linear) ordinary differential equations

which is solved using a standard built-in Matlab time integrator

ode23s, starting from t = t0. The initial values of the tail length

L0 is assumed to be an arbitrary small value. The velocity for the

tail and the droplet u(x, t0) = V(t0) and the radius of the droplet

Rs can be calculated once we know t0, the time when the droplet

forms.

The value of t0 is the non-trivial solution of the following equa-

tion

Tk.e. = Tk.e.l + Ts.e.l
(1)

which can be solved using Maple.
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(a) (b) (c)

(d) (e) (f)
Figure 5 Case 4. Visco-elastic fluid with k = 10−5. Shape of the tail at (a) t = 0; (b)
t = 0.5t0; (c) t = t0; (d) t = 2t0; (e) t = 3t0; (f) t = 5t0.

Results

The parameter values for the numerical simulations are: Vn =

5 m · s−1, ω = 4π × 104 s−1, Rn = 2.5× 10−5 m, ρ = 103 kg ·m−3,

and σ = 3 × 10−2 N · m−1. We have used a power-law model for

the elongational viscosity µ̂ based on the experimental data in [2]

µ̂ =







3 × 10−3 , |ǫ̇| ≤ 103 s−1

3 × 10−3
(

|ǫ̇|
103

)γ
, otherwise

in Pascal. Here ǫ̇ = ux is the axial strain-rate, γ is a free param-

eter and for Newtonian fluid, γ = 0. Other free parameters are

the elastic constant k, initial tail length L0, and tail radius near the

nozzle exit Rc.

Initial and boundary conditions

The initial conditions are computed based on t0, the time when

the droplet forms, which is estimated based on energy arguments.

With the velocity profile at the nozzle exit V without any damping

(β = 0), equation (1) becomes

2 cos2 ωt0 − cosωt0 −
6σC

ρAV2
n

= 1

where C = 2πRn is the circumference of the liquid cylinder.

Based on the parameter values given here, the non-trivial solution

can be obtained using Maple as ωt0 = 2.308. The total volume of

the droplet and the tail can be computed as

Vol =
∫ t0

0
AnVdt =

AnVn

ω
(1 − cosωt0) = 1.306 × 10−13

in m3. In our computation, we assume that a certain portion of

it forms the spherical droplet and the rest becomes the tail. Thus

we should have the following constraint on the droplet radius

Rs ≤

(

3Vol

4π

)

1
3 = 3.148 × 10−5

in m. The initial velocity of the droplet and the tail is assumed

to be equal to that near the nozzle exit with radius Rc, which is

(a) (b) (c)

(d) (e) (f)
Figure 6 Case 5. Visco-elastic fluid with k = 10−4. Shape of the tail at (a) t = 0; (b)
t = 0.5t0; (c) t = t0; (d) t = 2t0; (e) t = 3t0; (f) t = 5t0.

U j(0) = Vc(0) ≡
R2

n

R2
c

Vn sin(ωt0) = 3.702
R2

n

R2
c

in m · s−1. Therefore, it depends on the radius of the initial

tail radius Rc ≤ Rn, which is chosen as a free parameter here.

The initial length of the tail L0, can in principle be estimated

based on the choice of Rs and Rc. However, its value is cho-

sen as a small but non-zero value 10−5 m for computational pur-

poses. Finally, the boundary condition for velocity is given by

U0(t) = Vc(t) ≡
R2

n

R2
c

V =
R2

s

R2
c

Vn sin(ωt).

Power-law non-Newtonian fluid

We now present some of the computational results based on the

model and the parameter values listed earlier with no elastic ef-

fect, i.e., k = 0. In figure 2, the evolution of the droplet tail is

shown for Rs = 1.25Rn, Rc = Rn, and Vc = V. We have also

included damping in V with the damping rate β =
log(2)

2 ω. The

non-Newtonian power-law parameter is chosen as γ = 1.1. Fig-

ure 3 shows the tail evolution for the case when the radius of the

tail near nozzle exit is reduced to half of the nozzle radius, i.e.

Rc = 0.5Rn. This causes the tail to break up sooner, compared to

the previous case with a large Rc. Next we have investigated the

effect of parameter γ. In figure 4, we have the same parameter

values as in case 1, except that γ = 1.5. It can be seen that the

larger value of γ delays the breakup of the tail. Note that this case

corresponds to higher molecular weight polymer solutions.

Visco-elastic fluid

The visco-elastic effect of the fluid on the tail is investigated nu-

merically by giving non-zero values to the spring constant k and

the results are presented in figures 5 and 6. It can be seen from the

figures that the elasticity has visible effects. For the small spring

constant case (k = 10−5), the ‘satellite’ droplets appear but it is

not clear whether this is physical or due to numerical instabili-

ty. For the large k case, the elasticity is dominant and the droplet

has been pulled back toward the nozzle exit and the tail acts as a

spring.
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Conclusion

We have presented a one-dimensional model to predict the

breakup of the liquid filament (tail) attached to an ink-jet droplet.

The effect of a power-law non-Newtonian stress-strain relation-

ship on the evolution of the tail is investigated by solving the

model equations numerically. The results clearly show the de-

lay (and sometimes lack) of breakup of the droplet tail for higher

power relationships. This is consistent with the experimental evi-

dence for higher molecular weight polymer solutions. The elastic-

ity effect on the behaviour of the tail was also investigated. How-

ever, it is not clear whether the appearance of ‘beads’ on the tail,

resembling those satellite droplets observed experimentally, are

physical or due to numerical instability.

The numerical results also suggest that the mechanism for the

breakup of the tail is most likely not surface tension driven since

the viscous stress is much bigger than the surface tension based

on the calculation. The oscillatory nature of the pump drives the

flow at the nozzle exit and reverses its direction periodically. As

a result, the flow inside the liquid filament (tail) near the exit may

be ‘sucked’ back while the rest of the tail still moves forward with

the main droplet. This causes a decrease of fluid mass locally near

where the flow velocity changes direction and forms a ‘neck’. Sur-

face tension may become a contributing factor after the formation

of the neck and speed up the breakup process. It is possible that

a theoretical model can be developed to predict the final breakup

using a similarity solution. However, this is not pursued in the

current study.

In summary, these simulation results seem to suggest that

the one-dimensional model captures the essential features of the

breakup of ink-jet droplet tails. A positive connection between

the length of the tail and molecular weight is established from the

fact that delays in breakups usually result in a longer tail. And

the delay can be attributed to the higher power in the power-law

elongational viscosity, which is one of the consequences of higher

molecular weight in the polymer solution. However, it must be

noted that the current model has its limitations. First of all, we

have ignored the dynamical evolution of the droplet and the flow

between the tail and the droplet. Secondly, the flow near the exit

is certainly not one-dimensional. Contrary to Newtonian flows

where the exit liquid jets contract, the visco-elastic jets increase

their diameters (‘die swell’) after the exit [3]. Therefore, a more

careful study is needed to capture all the dynamics correctly and

two or higher dimensional models will be needed. k
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