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Research Spin glasses

A mystery about to

The study of spin glasses started some thirty years ago, as a branch of the physics of

disordered magnetic systems. In the late 1970’s and early 1980’s it went through a period of

intense activity, when experimental and theoretical physicists discovered that spin glasses

exhibit new and remarkable phenomena. However, a real understanding of the behaviour

of these systems was not achieved and little progress was made in the next twenty years,

especially in mathematical terms. In the 1990’s various related systems were studied with

mounting success, most notably, neural networks and random energy models. Since a

couple of years the field has again entered a phase of exciting development. Some of the

main mathematical questions surrounding spin glasses are currently being solved and a full

understanding is at hand. In this paper we sketch the main steps in this development, which

is interesting not only for the physical and the mathematical relevance of this research field,

but also because it is an example where scientific progress follows a tortuous path.

Fabio Toninelli worked as a postdoc in the Random Spatial Structures programme at

EURANDOM, and recently left for a post-doc position at the University of Zürich. Frank den

Hollander is supervisor of the RSS-group and scientific director of EURANDOM.

Let us begin with a brief history of mag-

netic materials. All matter is composed

of a large number of atoms. Atoms car-

ry a spin, i.e., a microscopic ‘magnet-

ic moment’ generated by the motion of

the electrons around the nucleus. This

spin, which in turn generates a microscop-

ic magnetic field around the atom, can be

viewed as a vector in three-dimensional

space. To simplify matters, assume that

for this vector only two opposite direc-

tions are allowed, up and down. In fer-

romagnets, materials capable of attracting

pieces of iron placed in their vicinity, each

spin has a tendency to align with the spins

in its neighbourhood. At high tempera-

ture, the motion of the spins is so errat-

ic that at any time about half of them are

pointing up and half are pointing down.

Consequently, the net macroscopic mag-

netisation is zero, i.e., the individual mi-

croscopic magnetic fields generated by the

spins cancel each other out. As the tem-

perature is lowered, the erratic motion of

the spins reduces and the spins become

more and more sensitive to their mutual

interaction. The characteristic feature of

ferromagnets is that there is a critical tem-

perature, Tc, below which the spins exhib-

it collective behaviour in that a majority of

them point in the same direction (either

a majority up or a majority down). This

phenomenon is called spontaneous mag-

netisation (see Figure 1).

Below Tc the individual microscopic

magnetic fields sum up coherently to cre-

ate a macroscopic magnetic field, which

is what is ultimately responsible for the

ferromagnet’s capability to attract iron. It

is important to emphasize that this seem-

ingly natural picture took a long time

to emerge — from 1895 (Curie) until

1944 (Onsager) — and that the genius of

many illustrious theoretical physicists and

mathematicians was necessary in order to

fully establish that this is what actually

happens.

The microscopic theory that explains

the collective behaviour of atoms is called

statistical physics. According to this theory,

a system in equilibrium is described with

the help of an energy functional, called

Hamiltonian, which associates with each

microscopic configuration of the system a

macroscopic energy. In our case a config-
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uration means a complete list of the ori-

entations of all the spins. If the spins are

located at the sites x in a macroscopic box

Λ, and if sx ∈ {+1,−1} denotes the value

of the spin at site x (+1 for up and −1 for

down), then the configuration is

s = {sx : x ∈ Λ}

and the Hamiltonian of the ferromagnet is

H(s) = − ∑
x,y∈Λ

x∼y

sxsy ,

where x ∼ y means that x and y are neigh-

bouring sites. Thus, each pair of neigh-

bouring aligned spins gets energy −1,

each pair of neighbouring anti-aligned

spins gets energy +1. At a given tempera-

ture T, the state of the system is described

by the Gibbs distribution associated with H,

µT(s) =
1

ZT
e−H(s)/kT , s ∈ {+1,−1}Λ ,

where k is Boltzmann’s constant and ZT

normalizes µT to a probability distribu-

tion: µT(s) is the probability that the sys-

tem assumes configuration s. When T is

lowered, µT tends to concentrate more

and more around the configurations hav-

ing minimal energy, the so-called ground

states of the system. For the ferromagnet

these ground states are those configura-

tions where all the spins have the same

value. Indeed, it is only when sx = +1

for all x or sx = −1 for all x that all terms

in H(s) give a negative contribution, lead-

ing to the maximal value for µT(s). This

maximum is a pronounced peak when T

is small, explaining why for low tempera-

ture in a typical configuration the majority

of the spins is aligned.

Spin glasses

Now that we have briefly introduced

some important concepts from the theo-

ry of magnetism, we are in a position to

explain what spin glasses are. Consider a

system of spins, as before, but assume that

some pairs of neighbouring spins prefer to

be aligned, while the others prefer to be

anti-aligned. The former are said to have a

ferromagnetic interaction, the latter an anti-

ferromagnetic interaction. Say that for any

given pair of spins the type of interaction

is chosen randomly with equal probability.

It is because of this randomness in the in-

teractions that such systems are called dis-

ordered.

In terms of the Hamiltonian, the above

model can be defined as

H(s) = − ∑
x,y∈Λ

x∼y

Jxysxsy ,

where, for each x ∼ y, Jxy can be either +1

(indicating a ferromagnetic interaction) or

Figure 1 Spontaneous magnetisation: the magnetisation
m(T) as a function of the temperature T for a typical con-
figuration of the spins; m(T) is the difference between the
number of up-spins and the number of down-spins divided
by the total number of spins. The characteristic feature of
ferromagnets is that there is a critical temperature, Tc , be-
low which the spins exhibit collective behaviour in that a
majority of them point in the same direction (either a ma-
jority up or a majority down). By symmetry, configurations
with the opposite magnetisation −m(T) are equally likely.
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Figure 2 The magnetic susceptibility χ(T) as a function
of the temperature T. χ(T) measures the sensitivity of the
system to the application of a magnetic field and shows
a cusp at the critical temperature Tc. This cusp signals a
freezing of the spins in random directions.

−1 (indicating an anti-ferromagnetic in-

teraction), with probability 1
2 each. This

Hamiltonian was introduced in 1975 by

Edwards and Anderson [8], in an attempt

to describe a class of disordered magnet-

ic systems found a few years earlier by

experimental physicists and termed ‘spin

glasses’. Examples in this class are disor-

dered magnetic alloys, i.e., metals contain-

ing random magnetic impurities, such as

AuFe or CuMn.

What is the analogue in this case of

the behaviour depicted in Figure 1? Even

at low temperature there is no reason

why the majority of the spins should

be aligned. Indeed, due to the equal

competition between ferromagnetic and

anti-ferromagnetic interactions the corre-

sponding magnetisation m(T) will be ze-

ro for all T. One might thus conclude that

the model simply has no critical tempera-

ture and therefore exhibits no interesting

phenomena.

However, in the early 1970’s it was

found experimentally, by Cannella and My-

dosh [6] and by Tholence and Tournier

[19], that there still is a critical tempera-

ture below which the system undergoes

an ordering transition, in the sense that the

spins act coherently in some sort of way

(see Figure 2). This fact came as a surprise

to the physicists.

In simplified terms, what happens is

the following. Above Tc, the spins be-

have essentially independently from one

another, i.e., their orientation is hardly in-

fluenced by the spins in their neighbour-

hood. As a result, the typical configura-

tions of the system are those that are com-

pletely disordered. This is true both for

the ferromagnet and for the spin glass.

Below Tc, however, the spins show co-

operative behaviour and can be found in

more than one class of typical configura-

tions. In the case of the ferromagnet de-

scribed above, there are two classes of

typical configurations, namely, those hav-

ing magnetisation +m(T) and −m(T), re-

spectively. These classes of configurations

are called pure states. In the case of the

spin glass, instead, there are many pure

states, which are not characterised by a

non-zero magnetisation, but rather by the

occurrence of many ‘mesoscopic domains’

(microscopically large but macroscopical-

ly small) in which the spins show some

form of ‘local magnetic order’. In fact, a

whole ‘hierarchy’ of such domains occurs.

At present it is not yet clear what the fea-

tures of these domains precisely are. The

important point, however, is that the exis-

tence of a transition at Tc is experimentally

observable.

The Edwards-Anderson model is far

too difficult to be analysed theoretically in

detail, even today. In fact, condensed mat-

ter physicists have been disputing heated-

ly in the past three decades about what

precisely happens at low temperature. In

1975 Sherrington and Kirkpatrick [15] in-

troduced a simplified version of this mod-

el. The difference with the Edwards-An-

derson model is that each spin is influ-

enced not only by its neighbouring spins,

but by all the spins in the system. The cor-

responding Hamiltonian reads

H(s) = −
1

|Λ|1/2 ∑
x,y∈Λ

x 6=y

Jxysxsy ,

where Jxy is +1 or −1, with probabili-

ty 1
2 each, for all x 6= y (rather than for

x ∼ y only), and a factor 1/|Λ|1/2 is

added to normalise the interaction. In sta-

tistical physical jargon, the Sherrington-

Kirkpatrick model is a mean-field approx-

imation of the Edwards-Anderson mod-

el. Strange as it may seem, this type of

approximation actually makes the model

easier.

For a history of spin glasses up to 1986,

we refer to Binder and Young [2].

Replica symmetry breaking

The article by Sherrington and Kirkpatrick

carried the rather innocent title A solvable

model of a spin glass. The authors nev-

er imagined that they were giving birth

to one of the most exciting enigmas of

modern statistical physics. The solution

they proposed, assuming so-called ‘repli-

ca symmetry’, turned out to be incorrect,

and even self-contradictory as they them-

selves realised very well. It was only a few

years later, in 1980, that the Italian theoret-

ical physicist Giorgio Parisi [14] proposed

a different solution, known as the continu-

ous replica symmetry breaking scheme, which

could account for many of the experimen-

tal observations (both laboratory experi-

ments and computer simulations).

Replica symmetry breaking theory pre-

dicts the existence of a collective be-

haviour with many exotic features, never

before observed in any physical system.

In simple words, Parisi’s theory predicts

that the Hamiltonian of the Sherrington-

Kirkpatrick model has many ground states

(growing in number as the volume of the

system increases), which are highly disor-

dered and which do not seem to be related

to one another via simple transformations.

In contrast, recall that the ferromagnetic

Hamiltonian has only two ground states,

one with all spins up and one with all

spins down, which are fully ordered and

which are related to one another via a

global inversion of all the spins. More-

over, it turns out that for the Sherrington-

Kirkpatrick model, by choosing a differ-

ent realisation of the disorder (i.e., a dif-

ferent choice for the random interactions

Jxy = ±1, again with probability 1
2 each),

the new ground states in general have

nothing to do with the old ones. Even

more surprisingly, if the disorder realisa-

tion is kept fixed but the volume of the

system is increased, then the new ground

states are not related to the old ones either

(‘chaotic size dependence’). In spite of

this extremely irregular situation, accord-

ing to Parisi’s theory the collection of all

the ground states has some regular, highly

non-trivial, geometrical structure, called

ultrametricity, which is not modified when

the disorder realisation is changed. So,

what distinguishes the region above the

critical temperature Tc from the one be-

low, for the Sherrington-Kirkpatrick mod-

el? Suppose that we take two copies —

two replicas — of the system, with the same

realisation of the disorder, and compute

the overlap between them, i.e.,

q(s(1) , s(2)) =
1

|Λ| ∑
x∈Λ

s
(1)
x s

(2)
x ,

where s(1) and s(2) are the configurations

of the first and the second replica, respec-
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tively. Then, above Tc the overlap is ze-

ro for typical configurations (typical with

respect to the Gibbs distribution and the

disorder realisation), while below Tc it can

assume a range of non-zero random values.

This can be explained as follows. Recall

that, at low temperature, the Gibbs distri-

bution is peaked around the ground states

of the system. Consequently, the config-

urations in the two replicas will each be

very close to one of the ground states (not

necessarily the same one), which causes a

non-zero overlap. Due to the erratic na-

ture of the ground states, the overlap does

not have a fixed value: it varies randomly

with the ground states.

Replica symmetry breaking theory came

as a shock to the physics community, not

only for the novelty of the phenomena

predicted, but also for the way in which

it was presented. It happens frequent-

ly that theories formulated by physicists

are not mathematically rigorous, and con-

tain a number of assumptions and simpli-

fications that need to be justified. Often

full mathematical proofs come only much

later. Here the situation was more deli-

cate: the works of Parisi and co-workers

were not only non-rigorous, they were

based on such strange and daring tech-

niques that it was hard to see how the rel-

evant statements could be formulated in

a proper mathematical language. This is

why part of the mathematics communi-

ty has regarded Parisi’s theory as some-

what magic. Still, the phenomena predict-

ed by the theory were so appealing, and

its range of applications so wide, that it

soon became a standard tool for theoreti-

cal physicists, who were much more excit-

ed by its power than worried by its lack

of mathematical sense and precision. One

could say that Parisi had discovered a new

world.

A review of the results of replica sym-

metry breaking theory up to 1987 can be

found in Mézard, Parisi and Virasoro [12].

Towards a solution

The reader might wonder at this point

whether all the excitement about the Sher-

rington-Kirkpatrick model is really justi-

fied. After all, it is only an approxi-

mate version of the more difficult — but

more realistic — Edwards-Anderson mod-

el, which remains unsolved. In fact, it is

not yet clear how much we really learn

about the Edwards-Anderson model from

a detailed analysis of the Sherrington-

Kirkpatrick model. According to a sce-

nario put forward by Newman and Stein

(see Newman [13]), the behaviour of the

two models may well turn out to be qual-

itatively different: the main phenome-

na related to replica symmetry breaking

may not occur in ‘short range’ models

like the Edwards-Anderson model. Still,

the excitement is understandable. First,

the study of the Sherrington-Kirkpatrick

model has taught us a lot and contin-

ues to do so. In the attempts to under-

stand this model, new ideas and tech-

niques have been invented and further de-

veloped that are extremely interesting and

that have turned out to be fruitful for oth-

er statistical physical models as well. Sec-

ond — and more importantly — it has

gradually become clear that the knowl-

edge gained through the analysis of the

Sherrington-Kirkpatrick model can be ap-

plied to a variety of — apparently unre-

lated — problems in mathematics, physics

and engineering. These problems have

therefore come to be considered as belong-

ing to the realm of spin glasses. Examples

are neural networks (models for memory

and learning), error correcting codes (used

in communications engineering to recov-

er the information transmitted through a

noisy channel) and random combinatorial

optimisation (problems of decision in the

presence of many mutually competing re-

quirements).

From the moment the replica symme-

try breaking theory came into being, try-

ing to prove — or to disprove — the pre-

dictions of Parisi and co-workers became

an exciting challenge for many among the

best mathematical physicists. The task

proved to be quite hard and frustrating,

and for almost twenty years progress was

painfully slow. Much effort was devot-

ed to the search for and the study of

mathematical models that would be easi-

er than the Sherrington-Kirkpatrick mod-

el, but that would still exhibit replica sym-

metry breaking effects. In particular, the

Generalized Random Energy Model, in-

troduced by Derrida [7] in 1985, shows

striking similarities with the Sherrington-

Kirkpatrick model, yet is exactly solvable.

The structure of the Gibbs distribution in

this model has been analysed in full math-

ematical detail by Bovier and Kurkova [4].

Similarly, extensive rigorous results have

been obtained by Bovier, Gayrard and Pic-

co for the Hopfield model of neural net-

works (see [3] and references therein). The

latter is a paradigm for auto-associative

memory, i.e., systems that try to recognize

words — or patterns — that were previ-

ously memorized. In this case, the spins

should be interpreted as the states of the

neurons located at the various sites: sx =

+1 if the neuron at site x is sending electric

pulses, sx = −1 if it is not. When varying

the number of memorized patterns, the

behaviour can range from a ferromagnetic

type to a spin glass type. For an overview

of the expanding panorama of spin glasses

up to 1998, see Bovier and Picco [5].

It gradually became clear — more

through failures than through positive re-

sults — that completely new ideas were

needed to make significant progress in

the comprehension of replica symmetry

breaking. It is only in the last few years

that we are witnessing a rapid and un-

expected boost in the mathematical un-

derstanding of the key questions. Sur-

prisingly, the missing new ideas turned

out to be relatively simple, although they

were very hard to find. The first steps

in this breakthrough were taken in 2000-

2002 by the Italian mathematical physi-

cist Francesco Guerra [10], together with

Fabio Toninelli [11], building on earlier

work by Ghirlanda and Guerra [9]. As

a result, some of the mathematical ques-

tions that had been tackled in vain in the

preceding twenty years could finally be

solved. One important result is the ex-

istence of the ‘thermodynamic limit’ for

the Sherrington-Kirkpatrick model. This

means that physical quantities, like the en-

ergy of the ground states divided by the

volume of the system, converge to a well

defined limit when the volume of the sys-

tem tends to infinity. The proof of this

fact is quite standard in statistical physics

for models with ‘short range’ interactions,

but it is not for mean-field models, espe-

cially not for disordered ones. Another

important result is that with the help of

certain rigorous comparison identities —

so-called sum rules — the thermodynamic

properties of the Sherrington-Kirkpatrick

model can be compared with the cor-

responding expressions given by Parisi’s

theory. These sum rules concern the free

energy f (T, |Λ|) as a function of the tem-

perature T and the volume |Λ|, a quantity

of central importance in statistical physics,

from which all thermodynamic proper-

ties of the system can be deduced. This

free energy is related to the Gibbs dis-

tribution µT via the relation f (T, |Λ|) =
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−kT log ZT . The result is that f (T, |Λ|)

can be related to the free energy predict-

ed by Parisi’s theory via an identity of the

type

f (T, |Λ|) = f Parisi(T, |Λ|) + R(T, |Λ|),

where R(T, |Λ|) is an ‘error term’. Prov-

ing the validity of Parisi’s theory is equiv-

alent to showing that R(T, |Λ|)/|Λ| tends

to zero in the thermodynamic limit |Λ| →

∞. A particularly important fact is that

R(T, |Λ|) turns out to be non-negative,

so that Parisi’s free energy at least is a

lower bound for f (T, |Λ|), a fact that it-

self is rich in physical implications (see

Toninelli [20]). Subsequently, Aizenman,

Sims and Starr [1] obtained Guerra’s sum

rules through a general variational prin-

ciple and showed that Parisi’s free ener-

gy arises from a restriction of this varia-

tional principle to ‘ultrametric structures’.

This restriction is optimal precisely when

replica symmetry breaking theory correct-

ly describes the Sherrington-Kirkpatrick

model.

These new ideas provoked great ex-

citement in the scientific community, and

new feverish work began. The last part of

this story is still in progress and is keep-

ing the excitement high. In July 2003 the

French mathematician Michel Talagrand,

who has been working on the problem in-

tensively and who has introduced many

new ideas in this field since the mid 1990’s

(see [16]), announced (see [17]) that he was

able to complete the mathematical proof

of Parisi’s solution, extending the method

of sum rules invented by Guerra. The de-

tails of the proof were made public only in

April 2004 [18]. It is not hard to imagine

the impression this development has pro-

duced on the experts. It seems that the full

mathematical justification of Parisi’s theo-

ry, explaining the mysterious features of

the Sherrington-Kirkpatrick model, is fi-

nally at hand.

Currently, research in this rapidly evol-

ving field is being carried out by a num-

ber of groups, including the RSS-group at

EURANDOM, the European institute for

research on stochastic phenomena located

at the Technical University of Eindhoven,

The Netherlands. k
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