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Snellius versneld

In 1621 ontdekte Snellius een eenvoudige manier om de benade-

ring van π van Archimedes aanmerkelijk te verbeteren. Dit bleek

een diepzinnig resultaat dat pas later werd bewezen. Frits Beukers

en Weia Reinboud, respectievelijk docent en studente aan de Uni-

versiteit Utrecht, plaatsen de methode in een breder verband en

ontwikkelen andere, op Snellius’ methode geïnspireerde formules.

Practically all computations of the value of π before 1600 were

done using Archimedes’ method. This method consists of ap-

proximation of the circle with diameter 1 by inscribed and cir-

cumscribed regular polygons. Denote the circumference of the

inscribed and circumscribed regular N-gon by PN and QN respec-

tively. Then PN < π < QN and

lim
N →∞

PN = lim
N→∞

QN = π .

A little trigonometry shows us that

QN = N tan
π

N
, PN = N sin

π

N
, (1)

from which the duplication formulae

Q2N =
2PNQN

PN + QN
, P2N =

√

PNQ2N (2)

follow readily. For more details, see [3].

Archimedes started with the values Q6 = 2
√

3 and P6 = 3

and calculated Q12 , P12 , Q24 , . . . , Q96 , P96 consecutively using the

duplication formulae in (2). See also [1].

Ludolph van Ceulen, around 1600, continued this procedure

until he obtained 35 decimal places of π . To get an idea of the

accuracy of the approximation QN to π we use the Taylor series

expansion of tan x. We get,

QN = N

(

π

N
+

1

3

(

π

N

)3
+

2

15

(

π

N

)5
+ · · ·

)

= π +
1

3

π
3

N2
+

2

15

π
5

N4
+ · · ·

In other words, QN − π has order of magnitude O( 1
N2 ). More

precisely, QN − π is equal to π
3

3N2 up to order O( 1
N4 ). Similarly,

PN − π equals − π
3

6N2 up to order O( 1
N4 ). From these two facts it

follows immediately that

1

3
(QN − π) +

2

3
(PN − π) =

1

3
QN +

2

3
PN − π

has order O( 1
N4 ). So we see that 1

3 QN + 2
3 PN gives an approx-

imation of π having approximately twice as many correct digits

as PN or QN . This was discovered by the Dutch natural scientist

Willebrord Snellius in 1621, about ten years after Van Ceulen’s

death. Snellius used geometrical observations to find his approx-

imations. Only much later Christiaan Huygens delivered a com-

plete proof of the correctness of these observations.

The conclusion is that Van Ceulen could have stopped halfway

through his calculations, compute 1
3 QN + 2

3 PN for the value of N

then reached, and obtain 35 decimal places of π . Such a speedup

of calculation makes one wonder if Snellius’ discovery can be gen-

eralised in its turn. It is the purpose of this article to give a number

of such generalisations.

In our considerations we assume that we carry out a number of

steps of the Archimedean algorithm. We then stop and collect the

values of PN , QN . Now use one of the theorems in this article. For

example, after we have done the Archimedean steps, we find, up

to 39 decimal places,

P96 = 3.141031950890509638111352926459660107036

Q96 = 3.142714599645368298168859093772123871001

π = 3.141592653589793238462643383279502884197

We see that Archimedes approximation is correct up to two deci-

mal places. Let us now use Archimedes result and, for example,

theorem 1, which states that

π = QN − QN

3

(

QN

N

)2

+
QN

5

(

QN

N

)4

− QN

7

(

QN

N

)6

+ · · ·

Afbeelding rechts. Willebrord Snellius (1580–1626).
Ets, 1600–1625, collectie Museum Boerhave.



Frits Beukers, Weia Reinboud Snellius versneld NAW 5/3 nr. 1 maart 2002 61



62 NAW 5/3 nr. 1 maart 2002 Snellius versneld Frits Beukers, Weia Reinboud

This series is easily obtained from the power series expansion of

arctan. Using N = 96 and our value of Q96 summation of 12

terms of this series yields the approximation

3.141592653589793238462643383279502883909

which is correct up to 35 decimal places. So Archimedes’ four

steps and addition of 12 terms in a series would have sufficed to

get Van Ceulen’s precision.

More generally, suppose we wish to compute π to L decimal

places. As a time unit we may take the time to perform one oper-

ation (addition, multiplication, division) of two L-digit numbers.

Then the Archimedean algorithms gives us the answer with L-

digit precision in O(L) steps. However, in the last section of this

article we see that if we combine the Archimedean steps with a

Snellius’ type acceleration, we require only O(
√

L) steps.

We have not made any effort to make this very precise, since

modern day methods are far better suited for the high precision

calculation of π . The most widely used are the Gauss-Salamin

procedure or the Ramanujan-Chudnovsky series, which are very

easy to program. Again, see [4] or [3].

The motivation for this note is not to present a speedup for the

calculation of π . Instead, we thought it remarkable that general-

isations of Snellius’ trick could be written down as a handsome

series, with terms that look quite simple. In the text one finds

series expressions for π

QN
in terms of QN

N and PN
N in theorems 1

and 6. Of course there also exists a power series expansion for π

PN

in terms of QN
N and PN

N . However, the first one will be a very ugly

one, which we haven’t even attempted to write down, whereas

the second looks very simple and is stated in theorem 4.

Of course the possiblity of improvements, like the ones dis-

cussed in this paper, has been considered by many others, profes-

sional mathematicians and amateurs alike. See, for example [5].

Unfortunately it is hard to get a good overview concerning

publications on this subject. So we do not claim any originality

in the results here. We present it as a hopefully amusing aside to

π-folklore.

Accelerations based on arctan

The first improvement is obtained by using the arctangent series.

From QN = N tan π

N it follows immediately that

π

QN
=

arctan(QN/N)

QN/N
.

Using the well-known Taylor series for arctan we obtain our first

result.

Theorem 1. We have

π

QN
= 1 − 1

3

(

QN

N

)2

+
1

5

(

QN

N

)4

− 1

7

(

QN

N

)6

+ · · ·

So, by subtracting QN · 1
3

(

QN
N

)2
from QN Van Ceulen could have

doubled the precision of his calculations in one stroke. By adding

the next term the precision could have been tripled. There is a

nice variation on the above formula which does not use PN/N or

QN/N, but only the value tN = QN−PN

2QN
. To explain this we need

a few facts on hypergeometric functions.

Let a, b, c be real numbers and c 6= 0,−1,−2, . . . Then the Gauss’

hypergeometric function with parameters a, b, c is defined by the

power series

FGauss(a, b, c; z) =
∞

∑
k=0

(a)k(b)k

(c)kk!
zk .

Here, (x)k is the so-called Pochhammer symbol defined by (x)k =

x(x + 1) · · · (x + k − 1). The series converges for all complex z

with |z| < 1. Here is one of the many transformation formulas

between hypergeometric series:

FGauss

(

1

2
a,

1

2
a +

1

2
,

1

2
a +

1

2
b +

1

2
;

4t2 − 4t

(1 − 2t)2

)

= (1 − 2t)a FGauss

(

a, b,
1

2
a +

1

2
b +

1

2
; t

)

. (3)

This formula is basically due to Kummer and can be found in [2,

page 561]. As a result of this formula we find the following appli-

cation which is useful for us.

Proposition 2. We have

FGauss

(

1

2
, 1,

3

2
;

4t2 − 4t

(1 − 2t)2

)

= 1 −
∞

∑
k=1

(2)k

(3/2)k

tk

k
.

Proof. To see this, apply formula (3) with a = b = 1 to get

FGauss

(

1

2
, 1,

3

2
;

4t2 − 4t

(1 − 2t)2

)

= (1 − 2t)FGauss

(

1, 1,
3

2
; t

)

= (1 − 2t)
∞

∑
k=0

k!

(3/2)k
tk .

For any k ≥ 1 the coefficient of tk in the last product is of course

equal to k!

(3/2)k
− 2

(k − 1)!

(3/2)k−1
.

A straightforward calculation shows that this is equal to

− (k + 1)!

(3/2)k

1

k
= − (2)k

(3/2)k

1

k
.

Our proposition now follows immediately. �

We note that the arctangent series is an example of a hypergeo-

metric series. One easily checks that

arctan z

z
= FGauss

(

1

2
, 1,

3

2
;−z2

)

.

We wish to substitute z = QN/N. Now observe that tN = (QN −
PN)/2QN = 1

2 (1 − cos π

N ). Using this, we find that

−
(

QN

N

)2

= −
(

sin π

N

cos π

N

)2

= 1 − 1

(cos π

N )2

= 1 − 1

(1 − 2tN)2
=

4t2
N − 4tN

(1 − 2tN)2
.

Using this observation and proposition 2 we find another result.

Theorem 3. We have

π

QN
= 1 −

∞

∑
k=1

(2)k

(3/2)k

tk
N

k
.
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Note that if we take the first two terms of this series, we get

π ≈ QN − 4

3
QN tN = QN − 2

3
(QN − PN) =

1

3
QN +

2

3
PN ,

which is precisely Snellius’ improvement. Finally we like to point

out that tN = 2(P2N/2N)2, so we see that tN is of order O( 1
N2 ).

Accelerations based on arcsin

Just as with the arctan series we can also play with the arcsin se-

ries, which reads

arcsin z

z
=

∞

∑
k=0

(1/2)k

k!

z2k

2k + 1

= FGauss

(

1

2
,

1

2
,

3

2
; z2

)

.

As an immediate consequence, the next theorem follows from
π

PN
= arcsin(PN /N)

PN /N .

Theorem 4. We have

π

PN
=

∞

∑
k=0

(1/2)k

k!

1

2k + 1

(

PN

N

)2k

.

There is a small variation based on the following proposition.

Proposition 5. We have

(1 − z2)1/2 arcsin z

z
= 1 − 1

2

∞

∑
k=1

(k − 1)!

(3/2)k
z2k .

Proof. This result follows from the another well-known formula in

hypergeometric functions, which reads

(1 − z)a+b−cFGauss(a, b, c; z) = FGauss(c − a, c − b, c; z).

The formula can be found in [2, page 559]. Apply this with a =

b = 1/2, c = 3/2 and z replaced by z2 to get

(1 − z2)−1/2 arcsin z

z
= FGauss(1, 1,

3

2
; z2).

Multiply on both sides by 1 − z2 and notice that

(1 − z2)
1
2 FGauss(1, 1,

3

2
; z2) = (1 − z2)

∞

∑
k=0

k!

(3/2)k
z2k

= 1 +
∞

∑
k=1

(

k!

(3/2)k
− (k − 1)!

(3/2)k−1

)

z2k

= 1 − 1

2

∞

∑
k=1

(k − 1)!

(3/2)k
z2k . �

We apply our proposition with z = PN/N = sin π

N . Notice that

(1 − z2)1/2 = cos π

N . Hence the proposition implies the follow-

ing.

Theorem 6. We have

π

QN
= 1 − 1

2

∞

∑
k=1

(k − 1)!

(3/2)k

(

PN

N

)2k

.

Looking back we see that we expressed π

QN
as a power series in

PN
N and in QN

N . We also expressed π

PN
as a power series in PN

N .

Although there is certainly a power series for π

PN
in terms of QN

N ,

the shape of this series does not seem to be as simply as the other

three.

Gain of the acceleration

In this section we indicate briefly how much Archimedes’ calcula-

tion can be speeded up using our Taylor series. As we said before,

we use the time taken for one operation on two L-digit numbers as

a unit of time. Suppose we wish to calculate π to L decimal places.

We first carry out
√

L steps of Archimedes’ algorithm. This gives

us
√

L · log10(4) correct decimal places. To increase this precision

by a factor
√

L we have to take O(
√

L) terms of any of the power

series given in the previous sections. So the total number of steps

is again O(
√

L).

As we already indicated in the introduction, modern methods

like the Gauss-Salamin algorithm or its speedup by the Borweins

provide a much faster scheme of computation. The number of

steps required for the latter methods is O(log L). k
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