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The general commutant
extension problem

Interpolatieproblemen kunnen ogenschijnlijk sterk van elkaar ver-

schillen. Veel interpolatieproblemen kunnen worden gezien als spe-

ciale gevallen van het zogenaamde probleem van de commuterende

uitbreiding. In dit artikel presenteert Ciprian Foias een overzicht van

de huidige stand van zaken omtrent dit fundamentele onderwerp

van de operatorentheorie. Op dit terrein heeft hij belangrijke bijdra-

gen geleverd. Het onderhavige artikel is gebaseerd op Foias’ lezing

gegeven aan de Universiteit Leiden, ter ere van zijn benoeming tot

Stieltjes Visiting Professor 2000.

The topic of this paper is an open question in Operator Theory

which can be traced back to Stieltjes’ solution to the moments

problems in [22], and which touches several fields of pure and

applied Functional Analysis.

Statement of the problem

The General Commutant Extension Problem (GCEP) is formulat-

ed as follows (see [10], [7]). Let G and H be (complex) Hilbert

spaces and let S : G → G and T : H → H be two bounded linear

operators on G and H, respectively. Let G0 be a (closed linear)

subspace of G, invariant under S and let S0 be the restriction S|G0

of S to G0. Let moreover A0 : G0 → H be a bounded linear oper-

ator, such that
(1)A0S0 = TA0 .

When does there exist a bounded linear operator A : G → H,

such that
(2a)A|G0 = A0

(i.e. extending A0), and

(2b)AS = TA?

In case such an operator A exists, find

(3)α = min {|A|| : A satisfies (2a) and (2b)} .

Clearly, without loss of generality we can assume

(4)||S||, ||T|| ≤ 1.

Above, || · || stands for the operator norm, and as throughout,

enough familiarity with the basic concepts in Operator Theory

(e.g. as in [15]) is surmized so that further detailed definitions are

not deemed necessary. We observe that a solution A to the prob-

lem above does not always exist, as illustrated by the following

elementary example [2].

(5a)G = H = C
2 , G0 =

{[

x1

x2

]

∈ C
2 : x2 = 0

}

and

(5b)S =

[

0 1

0 0

]

, T =

[

0 0

0 1

]

and A0x ≡ x ∈ G0 .
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Then (1) holds, but if (2a) holds too, then

(6)A =

[

1 a12

0 a22

]

and AS =

[

0 1

0 a22

]

6=
[

0 0

0 a22

]

= TA.

The worth of any open problem in mathematics depends, in par-

ticular, on the answers one provides to the following questions:

1. Is the problem a hard nut to crack in its own field?

2. Is the problem relevant to other fields of mathematics?

3. Can the solution to the problem be of use in scientific fields

beyond pure mathematics?

4. Is there any hope to find a ‘good’ answer to the problem?

I will present some answers to these questions. A first answer to

question 1 is easy to give: for me and some of my collaborators

and competitors in Operator Theory, the answer is “yes”; other-

wise we would have found a satisfactory solution in the last eight

years since we became interested in the problem. The difficulty re-

sides in aiming to give an affirmative answer to both questions 3

and 4; a thorough discussion of the latter question will be given

in the last part of the paper. The answers to questions 2 and 3 is

twice an emphatic “yes”. We will devote the main part of the pa-

per to provide a brief but hopefully instructive argument for this

statement.

Interpolation and the GCEP

At the beginning of the past century, Carathéodory considered

the following interpolation problem [3]: When does there exist an

analytic function f (z) in the unit disk D = {z ∈ C : |z| < 1} with

Taylor expansion

(6a)f (z) = a0 + a1z + · · · + anzn + O(zn+1),

where a0 , . . . , an ∈ C are a priori given, and such that

(6b)ℜ f (z) ≥ 0 for z ∈ D?

Notice that

ak =
1

2πrk

∫ 2π

0
f (reit)e−iktdt (0 < r < 1, k = 0, 1, . . . , n),

so that the problem can be construed as a partial version of Stielt-

jes’s moments problem. Note also that replacing this by

(0)f (z) := ( f (z) − 1)/( f (z) + 1), (z ∈ D),

we can consider the equivalent problem, considered by Schur

[21], where the condition (6b) is replaced by

(6c)| f (z)| ≤ 1 for z ∈ D.

Schur found the following remarkable solution. If f satisfying

(6a) and (6c) exists, then |a0| = | f (0)| ≤ 1. If |a0| = 1, then the

maximum principle forces f (z) ≡ a0. So if a j = 0, 1 ≤ j ≤ n, we

have exactly one solution. If not, there is no solution. If |a0| < 1,

then

(7a)
f (z) − a0

1 − ā0 f (z)
= zg(z) (z ∈ D)

where g(z) is analytic in D,

(7b)g(z) = b0 + b1z + · · · + bn−1zn−1 + O(zn),

(7c)|g(z)| ≤ 1 (z ∈ D)

and b0 = a1(1 − |a0|2)−1,

(7d)b j =

(

a j+1 + ā0

j

∑
i=1

b j−iai

)

/

(1−|a0|2)

for j = 1, 2, . . . , n− 1. This is exactly the same problem but with n
replaced by n − 1. Denote c0 = a0, c1 = b0. Let

n := n − 1, a j := b j , 0 ≤ j ≤ n − 1;

define b j as in (7d) and c2 := b0. If |c2| = 1, check if b j = 0,

1 ≤ j ≤ n − 1. If not, no solution exists. If |c2| < 1, continue.

This algorithm either stops at the first c j ∈ D \ D (where j ≤
n) or yields the coefficients c0 , c1 , . . . , cn in D. In the first case

the problem either has exactly one solution or none, while in the

second case, the solution is an explicit rational function in z and

an arbitrary analytic function glast(z) in D satisfying (7c).

These Schur coefficients c0 , c1 , . . . have a remarkable geophysi-

cal interpretation [18] (see also [8]). Indeed, consider a horizontal-

ly multilayered (isotropic linear elastic) medium such that the top

layer (0-layer) and the bottom layer ((n + 1)-layer) are of infinite

width and all contacts along the interfaces are welded. We also

consider vertically moving horizontal primary waves (i.e. oscil-

lating in the vertical direction only). At each interface, say the j-
interface, a downgoing wave of amplitude D j(t) will produce an

upgoing (i.e. reflected) wave with amplitude r jD j(t) and a down-

going wave (i.e. transmitted through the interface) with ampli-

tude (1 + r j)D j(t). The coefficient r j is called the reflection co-

efficient of the j-interface and −1 ≤ r j ≤ 1. In fact in nature

|r j| = 1 is a very rare occurrence. So we will consider only the

case when −1 < r j < 1 for all j = 0, 1, . . . , n. For upgoing waves

the same holds true but with r j replaced by −r j. For simplicity,

we shall assume that the j-layers (for j = 1, 2, . . . , n) are crossed

by these waves in .5 units of time. It can be easily proven (see [8],

Ch. XVII) that in this case, by producing a vertical oscillation D(t)
on the upper side of the 0-interface, one will register at the same

site an upgoing wave V(t) of the form

V(t) =
∞

∑
j=0

a jD(t − j)

such that the Schur coefficients c0 , c1 , . . . , cn associated to the

Carathéodory-Schur problem (3.1a), (3.1c) are precisely the reflex-

ion coefficients r0 , r1 , . . . , rn. Moreover the function

(8)f (z) = a0 + a1z0 + · · ·

is exactly the solution to this problem when glast(z) ≡ 0.

What does the above discussion have to do with the problem

formulated at the beginning? In fact, the hidden mathematical

background of the last paragraph is an affirmative “good” so-

lution to a particular case of the General Commutant Extension

Problem (referred to as GCEP in the sequel), namely

Theorem 1. If in GCEP, ||S|| ≤ 1 and T∗ is an isometry

(i.e. ||T∗h|| = ||h|| for all h ∈ H), then α in formula (3) equals

||A0||.
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This result is due to Sarason [20] and (in the general form) to Sz.-

Nagy et al.[23–24], and is referred to in the literature as the Com-

mutant Lifting Theorem, a name coined by Douglas, Muhly and

Pearcy [6]. To see that the Carathéodory-Schur problem (6a), (6c)

can be solved by applying Theorem 1, define

(9a)

G = H = ℓ
2
+ :=

:= {x = [x0 , x1 , . . .] : x′js ∈ C, ||x||2 =
∞

∑
j=1

|x j|2 < ∞},

(9b)G0 = {x = [x0 , x1 , . . .] ∈ ℓ
2
+ : xn+1 = xn+2 = · · · = 0},

(9c)Tx = Sx = S[x0 , x1 , x2 , . . .] = [x1 , x2 , . . .] for x ∈ G

(9d)A0x =



















ā0 ā1 · · · ān

ā0 ā1 · · · ān

ā0 ā1 · · · ān

ā0 ā1 · · · . . .

. . .
. . .



















x for x ∈ G0 .

Note that

||A0|| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣







ā0 · · · ān

ā0

...

ā0







∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣











a0

a1 a0
... a1 a0

an · · · a1 a0











∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

where the last two norms are those of the corresponding matri-

ces as operators on C
n+1. Due to Theorem 1, there exists an

A = ℓ2
+ 7→ ℓ2

+ satisfying ||A|| = ||A0|| and (2a,b). These last

two conditions force

Ax =













ā0 ā1 · · · ān ān+1 · · ·
ā0 ā1 · · · ān ān+1 · · ·

ā0 ā1 · · · ān ān+1 · · ·
. . .

. . .
. . .

. . .













x for x ∈ ℓ
2
+

and, setting f (z) = a0 + a1z + a2z2 + · · · (for z ∈ D) we have

(9d)sup{| f (z)| : z ∈ D} =||A|| =||A0||.

This is Sarason’s way to obtain an optimal solution to the

Carathéodory-Schur problem ([26]; see also [8], Ch. X).

Good answers

Theorem 1 turned out to be quite useful to Control Theory. For

theoretical guidance and for dimension-free algorithms, espe-

cially when transcendental transfer functions cannot be avoided,

see [8], Ch. XII or [9], Ch. VII. For a much more engineering ori-

ented approach involving Theorem 1, see [12]. In nonlinear an-

alytic Control Theory as developed in [13], [14] and [11]one has

to replace Theorem 1 with a rather complicated causal version of

it. It turned out (see [10]) that this version is equivalent to a new

particular case of the GCEP, namely

(10a)S is isometric;

(10b){g ∈ G : ∃ n = n(g) such that Sng ∈ G0} is dense in G.

The problem has a ‘good’ solution only in particular cases [10],

[17], for instance:

Theorem 2. [10] If (10a,b) hold and ker T := {h ∈ H : Th =

0} = {0}, then GCEP has a solution if and only if there exists a

constant M < ∞ such that

(10c)||PGn
S∗n A∗

0h|| ≤ M||T∗nh||

for all h ∈ H, n = 0, 1, 2, . . . where PGn
is the orthogonal projection

of G onto Gn = {g ∈ G : Sng ∈ G0}. In this case (see (3))

(10d)α = min{M : M as in (10c)}.

Another remarkable particular case in which GCEP has a ‘good’

answer is the following

Theorem 3. [4–5] Let S and T be isometries. Then GCEP has a

solution if and only if there exists a constant M < ∞ such that

(11a)||A0|| ≤ M,

(11b)||Pker T∗n A0g0|| ≤ M||Pker S∗n g0||

for all g0 ∈ G0 , n = 0, 1, . . . In this case

(11c)α = min{M : M as in (11a), (11b)}.

In order to give a different type of example, let

(12a)Sc := PGc
S|Gc ,

where Gc = G ⊖ G0 is the subspace of G formed by all vectors

orthogonal on G0; equivalently,

(12b)S∗
c = S∗|Gc .

As before, the vertical bar in (12a), (12b) denotes the restriction to

the space following the bar, PGc
denotes the orthogonal projection

of G onto Gc. Now we can formulate the following particular

answer to GCEP:

Theorem 4. [10] If

(13)lim
n →∞

||Sn
c g|| ≥ θ||g|| for g ∈ Gc

for some θ ∈ (0, 1), then the α in (3) exists and satisfies

(14)α ≤ (1 + θ
2)1/2

θ
−1||A0||.

Note that condition (10b) can be reformulated in terms of Sc as

follows:
(15)

∞
⋃

n =0

ker Sn
c is dense in Gc ,

which is the extreme counterpart of (13).

The Commutant Lifting Theorem (i.e., Theorem 1) has two in-

triguing generalizations, both of which can be viewed as ‘good’

answers to the GCEP in appropriate cases. The first one is given

by the following remarkable results of Treil and Volberg, reformu-

lated in the following

Theorem 5. [25] If in the GCEP, ||S|| ≤ 1 and ||T∗h|| ≥ ||h|| for

all h ∈ H, then α = ||A0||.
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The second generalization of Theorem 1 (in fact of Theorem 5 as

well) is

Theorem 6. [2] If in the GCEP, ||S|| ≤ 1 and there exists an op-

erator Ω on H such that

(16)Ω ≥ 0 (i.e. (Ωh, h) ≥ 0

for all h ∈ H), TΩT∗ − Ω ≥ 0 and Ω − A0 A∗
0 ≥ 0, then there

exists an A satisfying (1.2a,b) and

(17)AA∗ ≤ Ω.

Thus in particular (18)α ≤||Ω||1/2 .

It is clear that Theorem 6 implies Theorem 5 (take Ω = I) and that

Theorem 5 implies Theorem 1 (obviously, T∗ is an isometry if it

satisfies ||T∗h|| = ||h|| for all h ∈ H).

Moreover, the original proof of Theorem 3 was obtained by us-

ing Theorem 1, i.e., Theorem 1 implies Theorem 3. The latter can

be given also a direct proof (see [9], Ch. XII). Theorem 2 and 4

are quite independent of the other theorems. It is a strange fact

(from [1]) that the GCEP reduces to its following particular case:

(19a)S is an isometry

(in fact such that ||S∗ng|| → 0 for all g ∈ G) and

(19b)
∞
⋃

n =1

ker T∗n is dense in H.

Moreover, in this case (11b) is still a necessary condition (albeit

not sufficient!) for the existence of A in the GCEP.

A disturbing aspect concerning the illustrative list of answers

to particular cases of the GCEP provided by Theorems 1–6 is that

they are so different that it is hard to imagine one simple general

answer to the GCEP which will trivialize these cases. In Von Neu-

mann’s opinion, when any portion of mathematics starts looking

rather like the delta of a river and no more like the river itself,

that may be translated from visual to auditive perception as the

swan’s last song. In a plain formulation: The General Commutant

Extension Problem may not have a ‘good’ solution at all.

So we should now discuss what is a ‘good’ solution to the

GCEP. However, it is much easier to show what is a ‘bad’ solu-

tion. First remark that to solve the GCEP means to find an explicit

way to determine when α in (3) exists and, if so, to compute it.

There may be very many ways to do that. For instance, in the

next paragraph we will present such a way (see below, Theorem

8), due to C. Gu and myself ([7], § 11). However, this almost com-

plete solution to the GCEP is a good example of a ‘bad’ answer

to the GCEP. For instance, it does not seem to provide a new ap-

proach to any of the Theorems 1–6. In fact, it just seems useless.

Bad solutions

In this paragraph (which can be skipped by a casual reader) we

will collect some simple facts necessary to prove Theorem 8.

Lemma 1. The GCEP has a solution A if and only if there exists a

bounded linear operator X : Gc → H such that

(20a)TX − XSc = A0PG0
S|Gc .

In this case

(20b)A = A0PG0
+ XPGc

.

The proof is pure elementary algebra once one notices that

(20c)PGc
S = PGc

Sc .

As an aside one has the following corollary.

Theorem 7. If the spectra of T and Sc are disjoint, then the GCEP

has a unique solution A.

Indeed in this case (20a) has a unique solution X (see for in-

stance [19]).

Lemma 2. Let X be a Banach space, Γ : X → X a bounded linear

operator on X and f ∈ X∗ a bounded linear functional on X. Then

(21a)f ∈ Γ
∗X∗

if and only if there exists a constant M < ∞ such that

(21b)| f (x)| ≤ M||Γ x|| for all x ∈ X.

It is clear that if f = Γ
∗g with some g ∈ X∗, then (21b) holds

with M = ||g||. For constructing such a g, if (21b) holds, apply

the Hahn-Banach theorem to the functional h defined on Γ X by

h(Γ x) = f (x), x ∈ X.

Denote by X the space σ1(H, Gc) of all finite trace operators

F : H → Gc, i.e. such that F∗F has the form

(22a)F∗Fh =
∞

∑
j=1

λ j f j(h, f j) for all h ∈ H,

where { f j}∞

j=1 is an orthonormal system in H and

(22b)||F||1 =
∞

∑
j=1

λ
1/2
j < ∞.

The map F → ||F||1 is then a norm on X and X endowed with

this norm is a Banach space (see [16], Ch. VI). The dual space X∗

of X can then be identified with the space B(Gc , H) of all bounded

linear operators Y : Gc → H endowed with the usual operator

norm. The duality is given by

(22c)〈Y, F〉 = trace(FY) for F ∈ X, Y ∈ X∗ .

Now define the operator Γ on X by

(23a)Γ F = FT − ScF for F ∈ X.

Then (23b)Γ
∗Y = TY − YSc for Y ∈ X∗ .

Thus Lemmas 1 and 2 have the following immediate conse-

quence:

Theorem 8. The GCEP has a solution A if and only if there exists

a constant M < ∞ such that

(24)|trace(A0PG0
SF)| ≤ M||FT − ScF||1 for all F ∈ σ1(H, Gc).

Note that in view of (20b) and the proof of Lemma 2, we also have

(25)α ≤
√

2 max{||A0||, min{M : M as in (24)}}.
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Conclusion

As already mentioned above, I do not know any proof for any of

the Theorems 1–6 based on Theorem 8. But there are other rea-

sons for which I consider this theorem to provide a ‘bad’ solution

to the GCEP. They will be evident if I conclude with my defini-

tion of what should be a ‘good’ solution to the GCEP. Namely,

first find a linear operator Â0 defined on a specified dense linear

subspace of an adequate Hilbert space with values in (perhaps an-

other) Hilbert space, Â0 being uniquely determined by the data,

such that A exists if and only if A0 is bounded and in this case

α = ||Â0||. Secondly, deduce all Theorems 1–6 by estimating di-

rectly the norm ||A0||. Thirdly, obtain a workable algorithm for

computing ||A0|| in the case (10a,b). So I conclude wishing good

luck to anyone who will try to find such a ‘good’ solution to the

GCEP. k
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