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Sinds mei 2000 werkt Joost van Hamel als postdoc aan

de faculteit wiskunde van de Universiteit van Sydney.

Vielen hem in de vorige twee afleveringen van deze

column vooral de verschillen met Nederland op, nu

springen hem allerlei overeenkomsten in het oog.

Problem 15 (Frits Beukers)

Compute the surface area of the figure |xy(x + y)| ≤ 1.

Problem 16 (Lex Schrijver)

Show that any given sequence x1 , ..., xn ∈ [0, 1] there exists a sequence y1 , ..., yn ∈ [−1, 1]

such that |yi| = xi and such that for each k ≤ n:
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∑
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∣
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∣

∣

∣

≤ 2.

Problem 17 (Alex Heinis)

Given a triangle ABC with sides of length a, b, c. Three squares V, W, Z with sides of

length x, y, z, respectively, are inscribed in the triangle. The square V has two vertices on

BC, one on AB and one on AC. In the same way, W and U have two vertices on AB and

two vertices on AC, respectively. Find the minimal value of a
x + b

y + c
z .

Solutions to volume 1, number 3 (September 2000)

Problem 7

For a natural number n not divisible by 3 show that the only integer solutions of

(X2 − YZ)n + (Y2 − XZ)n + (Z2 − XY)n = 1

are the trivial ones.

Solution by the contributor of the problem, H. van den Berg. We may assume that n > 3

as the cases n = 1 and n = 2 are straightforward. Consider the symmetric polynomial

P(X, Y, Z) = X2 + Y2 + Z2 − XY − XZ − YZ.

If we can show that P(X, Y, Z) divides the symmetric polynomial Q(X, Y, Z) =

(X2 − YZ)n + (Y2 − XZ) + (Z2 − XY)n then under the given conditions P(X, Y, Z) = 1.

This implies that (X − Y)2 + (X − Z)2 + (Y − Z)2 = 2. One of the three squares is zero

and the other two squares are equal to one. Without loss of generality we may assume

that Y = X and Z = X + 1. By substitution in the original equation we find that the only

solutions are the trivial ones.

It remains to show that P(X, Y, Z) divides Q(X, Y, Z). Suppose that A is a cyclic permu-

tation matrix of order n, so An = I, and suppose that a, b, c are integers. The determinant

of the matrix B = aI + bA + cA−1 is equal to

det B = an + bn + cn + k1an−2bc + k2an−4b2c2 + . . . (1)

for integers k1 , k2 , . . . Now verify that, since n is not divisible by 3, det(I + A + A−1) =

3. By subsituting a = b = c = 1 in equation (1) we see that k1 + k2 + k3 + . . . = 0. Use

this to rewrite the determinant as

det B = an + bn + cn + k1an−2(bc − a2) + k2an−4(b2c2 − a4) + . . .

So we have that det B = an + bn + cn + N(a2 − bc) for some integer N. Choose

a = X2 − YZ and b = Y2 − XZ and c = Z2 − XY and observe that a2 − bc is divisi-

ble by X2 + Y2 + Z2 − XY − XZ − YZ. Add the columns of B to find that a + b + c is

an eigenvalue. Since for our choice P(X, Y, Z) = a + b + c, we conclude that P(X, Y, Z)

divides det B.
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Partition the set of numbers {1, 2, . . . , 2n} into n pairs and denote the set of pairs by A.

Define a partial order on A by {ai , bi} < {a j , b j} if and only if a j < ai < bi < b j. As

usual, we call a well ordered subset of (A, <) a chain and we say that two chains A1 , A2

cover A if A1 ∪ A2 = A. Count the number of partitions into pairs for which A can be

covered by two chains.

Solution This is a problem with a pitfall. It is tempting to count as follows. Suppose

that A is a set of pairs covered by A1 and A2. Let V1 = {v1 , v2 , . . . , v2k} be the set of all

elements of A1. Then obviously the chain A1 has to be (v1 , v2k) > (v2 , v2k−1) > . . . . So

to count all the partitions you just have to count all subsets of even order of {1, 2, . . . , 2n}
and, by symmetry, divide by 2. This gives the answer 22n−2. There is a mistake in the

argument, as a check of the case n = 2 gives 3 partitions into two pairs, all of which are

covered by two chains. The right answer to the problem is
(2n

n

)

/2. Ronald de Man has a

short solution, but it is not elementary. A crisp counting argument would be appreciated.

Problem 9

Given a trapezoid with a right angle and an inscribed circle. Let L be the line through the

intersection of the diagonals, parallel to the base of the trapezoid. Show that the length

of the segment on L bounded by two sides is equal to the height of the trapezoid.

Solutions by L. Bleijenga (Den Haag), Minh Can (Washington DC), Kees Jonkers (Alk-

maar), Aad Goddijn (Utrecht), W. Kleijne (Heerenveen), Floor van Lamoen (Goes), A.J.

Tiggelaar (Leeuwarden).

Nearly all contributors supply a very similar solution as given below. Some contributors

give more than one solution. Goddijn and Jonkers give a solution by Brianchon’s theo-

rem. Aad Goddijn and Floor van Lamoen remark that the problem can be generalized to

quadrilaterals.

Let ABCD be the given trapezoid, A and D being right angles, so that AD is the altitude,

say of length h. The radius of the inscribed circle is thus h/2. Let WXYZ be the points of

contact of the inscribed circle with the trapezoid. Let P be the point of intersection of AC

and WY. We see that P divides AC such that AP : PC = AW : YC. Let P′ be the point of

intersection of AC and ZX. We will show that P′ = P.

Let ∆ denote area. First note that ∆AP′Z : ∆CP′X = P′A · P′Z : P′C · P′X. Then, because

angles PZA and PXC are supplementary (AD and BC being tangents to a circle at the

ends of chord ZX), we also see that ∆AP′Z : ∆CP′X = ZA · ZP′ : XP′ · XC. We conclude

AP′ : P′C = ZA : XC = AW : YC and we see that YW and ZX intersect in a point P = P′

on AC.

With the same type of reasoning we find that YW and ZX intersect on BD as well. So

we have that YW, XZ, AC and BD are concurrent in a point Q. Now let the parallel

line to AB through Q meet AD in R and BC in S. We have seen that QR = h/2. Since C

and D are both at distance h from AB, we see that triangles ABD and ABC must intercept

congruent segments of RS and we are done.
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Below are the solutions to the problems 961–978, which belong to the Problem Section of

the fourth series of Nieuw Archief.

Problem 961 (S. András and A. Bege)

Let x1 , x2 , x3 , x4 be real numbers satisfying 0 < x1 ≤ x2 ≤ x3 ≤ x4 and let s = x1 + x2 +

x3 + x4. Prove the following equality

x1x4

s − x3
+

x2x1

s − x4
+

x3x2

s − x1
+

x4x3

s − x2
≤ x1x2

s − x3
+

x2x3

s − x4
+

x3x4

s − x1
+

x4x1

s − x2
.

Solutions by R.A. Kortram, A.A. Jagers, H.J. Seiffert, A.J.Th. Maassen, F.J.H. Barning,

J.H. van Geldrop, C. Jonkers. Most solutions note a small error in the original problem

and are very similar. A.A. Jagers demonstrates that Maple can do all the work. Remove

the denominators by multiplication, after which many terms cancel and by persistent

computation we get the inequality x1x2(x1 + x3) ≤ x2x4(x2 + x4), which is an immediate

consequence of 0 ≤ x1 ≤ x2 ≤ x3 ≤ x4.

Problem 962

R.A. Kortram, A.A. Jagers, H.J. Seiffert, A.J.Th. Maassen and J.H. van Geldrop all observe

that this problem is incorrect, although Seiffert manages to salvage the problem under an

extra assumption.

Problem 963 (M.L.J. Hautus)

Let R denote a (not necessarily commutative) ring and let a, b, c ∈ R.

• Assume that an + bn = cn for n = 1, 2, 3. Prove that this equation holds for all natural

numbers n.

• Give an example of a ring for which the equation holds for n = 1, 2 but not for n = 3.

Solutions by R.A. Kortram, H.A. and R.W. van der Waall, A.A. Jagers, C. Praagman,

A.J.Th. Maassen, J.H. Nieto, J.H. van Geldrop, R.H. Jeurissen. Below is the very effi-

cient solution by R.H. Jeurissen. From (a + b)2 = a2 + b2 we find ab = −ba so a2b = ba2.

From (a2 + b2)(a + b) = (a + b)3 = a3 + b3 we find that a2b = −b2a. By induction we

prove that abn = −ban for all n:

abn = (ab)bn−1 = −babn−1 = bban−1 = baan−2 = −a2ban−2 = ban .

Again by induction we now get the desidered equality (a + b)n = (a + b)(a + b)n−1 =

(a + b)(an−1 + bn−1) = an + bn + abn−1 + ban−1 = an + bn. As an example for the second

question consider the quaternions (over any field). Take a = i and b = j.

Problem 964 (J. van de Lune)

Let, as usual, π(x) denote the numbers of primes not exceeding x ∈ R and let ⌊.⌋ be

the integer part. Prove that there exists a unique sequence a(i) in Z such that π(x) =

∑n≤x a(n) ⌊ x
n ⌋, x > 0. Determine this series and rewrite ∑∞

n=1 an/ns in terms of ‘well-

known’ Dirchlet series.

Solutions by K.W. Lau, M.T. Kosters, H.J. Seiffert. The solutions are the same. Let f be

the characteristic function of the primes. Since

π(x) = ∑
n≤x

a(n) ⌊ x

n
⌋ = ∑

n≤x

a(n) ∑
m≤x/n

1 = ∑
m≤x

∑
n|m

a(n),

it follows that f (m) = ∑n|m a(n). Apply Möbius inversion to find a(n) = ∑p|n µ( n
p ),

where µ is the Möbius function. Some calculation shows that for Re s > 1 we have that
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∞

∑
n =1

a(n)/ns =
1

ζ(s) ∑
p prime

1/ps .

Problem 965 (J. van de Lune)

For k ∈ N let M(k) denote the least common multiple of the integers 1, 2, . . . , k. Find the

first 2k + 1 indices ai in the continued fraction expansion

M(k) log(1 + 1/M(k)) =
1

a1 +
1

a2 +
1

a3 + · · ·

.

Solution by F.J.M. Barning, who shows that a2i+1 = 2i + 1 for i = 0, . . . , k and a2i =

2M(k)/i for i = 1, . . . , k, for which he gives a self-contained proof. Van de Lune’s original

solution contains a short cut using Lambert’s general continued fraction expansion of

log(1 + x) (Perron, Die Lehre von den Kettenbrüchen, (1929), p. 349).

Problem 966 (J.B. Melissen)

Show that for 0 < x < π we have (cos x
2 )4

< ( sin x
x )3

< (cos x√
5
)5.

Solutions by R.A. Kortram, A.A. Jagers, K.W. Lau, H.J. Seiffert, F.J.M. Barning, P. Mc-

Cartney. Below is the solution by A.A. Jagers. The Bernoulli numbers Bn are defined by

∑ Bn
zn

n! = z
ez−1 for |z| < 2π . Then z cot z = ∑∞

n=0
(−1)n4n B2n

(2n)!
z2n for |z| < π and hence by

integration of cot z − z−1, recalling that (−1)nB2n < 0 for all n > 0

log
sin z

z
= −

∞

∑
n=1

4n|B2n|
2n(2n)!

z2n (|z| < π).

By using the duplication formula sin 2z = sin z cos z it follows that

log cos z = −
∞

∑
n=1

4n(4n − 1)|B2n|
2n(2n)!

z2n (|z| < π/2).

Using these two equations it is easily verified that the logarithmic version of the inequal-

ity holds even term-wise

4 log cos
x

2
< 3 log

sin x

x
< 5 log cos

x√
5

(0 < x < π).

Problem 967 (F. Rothe)

LetP2n+1 = ∑n
k=0(−1)k x2k+1

(2k+1)!
be the 2n + 1-th order MacLaurin polynomial of the func-

tion sin x. Let c2n+1 be the number of real zeroes of P2n+1 counting multiplicities. Deter-

mine the limit
lim

n →∞

c4n+1

4n + 1
.

Solutions by R.A. Kortram and A.A. Jagers. This was certainly one of the harder prob-

lems, requiring several steps to get to the final solution. F. Rothe needs twelve lemmas

to get to the result. The solutions of R.A. Kortram and A.A. Jagers are somewhat shorter.

Below is an outline of Kortram’s solution, which consists of three parts.

STEP 1. If 0 < α < 1, then P8n+3 and sin x have the same number of zeroes on the disc

D(0, 8n
e (1 −α)) for sufficiently large n. For |z| = 8n

e (1 −α) we have that
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∞

∑
k=4n+2

(−1)k z2k+1

(2k + 1)!

∣

∣

∣
≤

∞

∑
k=8n+5

|z|k
k!

≤
∞

∑
k=8n+5

( 8n(1 −α)

k

)k
<

∞

∑
k=8n

(1 −α)k =
1

α
(1 −α)8n .

For n sufficiently large, we have that | sin z− P8n+3(z)| < | sin z| on the circle with radius
8n
e (1 −α), so the assertion follows from Rouché’s theorem.

STEP 2. All zeroes of P8n+3 are real. We consider only positive real numbers x. If x2
<

(8n + 6)(8n + 7) then the sequence x8n+3+2k

(8n+3+2k)!
is decreasing for k = 1, 2, 3, . . .. Thus we

have that x8n+5

(8n + 5)!
− x8n+7

(8n + 7)!
< sin x − P8n+3 <

x8n+5

(8n + 5)!
.

In particular if x <
8n
5 , then sin x − P8n+3 < ( 8n

8n+5 )8n+5
<

1
e5 . So it appears that

the graphs of sin and P8n+3 differ less than 1 and sin is always bigger. Every interval

(2kπ , (2k + 1)π) contains at least two zeroes for P8n+3 and therefore the number of real

zeroes is at least 8n
πe (1 −α) in the disc. Step 1 gives that, asymptotically, this is the total

number of zeroes of P8n+3 in the disc.

STEP 3. P8n+3 has no zeroes outside the disc D(0, 8n
e (1 +α)).

Subsitute x0 = 8n
e (1 +α) in inequality (1) to get that

sin x0 − P8n+3 ≥ c
(1 +α)8n+5

8n + 5
> 2

for sufficiently large n. Since sin x − P8n+3 is increasing this implies that P8n+3 < 0

for x > x0. Hence there are no real zeroes for |x| ≥ 8n
e (1 + α). The number of ze-

roes is at most 8n
πe (1 +α). Combining this with our previous estimate we conclude that

limn→∞

c4n+1

4n+1 = 2
πe .

Problem 968 (H.J. Seiffert)

Let f : [0, 1] → (0, ∞) be a C1 function such that log f is convex. For real p 6= 0 define

Sp = 1
2 ( f (0)p + f (1)p) and Ip =

∫ 1
0 f (x)pdx. Show that

p+1
p Ip+1 ≤ 1

p Sp I1 + S1 Ip.

Solutions by R.A. Kortram and J.H. van Geldrop. Below is the solution of R.A. Kortram.

We may assume that f (0) = 1. Define for t ∈ [0, 1]

g(t) =
( f p(t) + 1)

p

∫ t

0
f (x)dx + ( f (t) + 1)

∫ t

0
f p(x)dx − 2(p + 1)

p

∫ t

0
f p+1(x)dx.

It is immediate that g(0) = 0. Observe that the problem is to show that g(1) ≥ 0 and we

will do this by showing that g has a non-negative derivative.

g′(t) =
( f ′

f
− f − 1

∫ t
0 f

)

f p
∫ t

0
f +

1

p

( ( f p)′

f p − f p − 1
∫ t

0 f p

)

f
∫ t

0
f p .

Since log f is convex, so is log f p and we have that both
f ′

f and
( f p)′

f p are non-decreasing.

Now the required follows from the observation that
g(t)−1
∫ t

0
g

=
g′(θ)
g(θ)

for some θ < t by the

second mean value theorem.

Problem 969 (H.J. Seiffert)

Let a and b be positive and unequal real numbers. Prove that
(

aa

bb

)1/(a−b)
< (

√
a +

√
b)2.

Solutions by F.J.M Barning, R.A. Kortram, A.A. Jagers, M.T. McGregor, K.W. Lau, C. van

Berkel, A.J.Th. Maassen, J.H. Nieto, J.H. van Geldrop, R.H. Jeurissen, P. McCartney. Be-

low is the solution by Nieto. By symmetry we may assume that a > b > 0. For t > 1 and

x > 0 the inequality (1 + x)t
> 1 + tx holds. Subsitute t = a/b and x =

√
b/a to obtain

that (1 +
√

b/a)a/b
> 1 +

√
a/b. Rewrite this to (

√
a +

√
b)2(a−b)

> aa/bb which gives

the desired result after raising to the power 1/(a − b).
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Let ai and pi be positive numbers for i = 1, . . . , n and n ≥ 2, satisfying either pi ≤ 1 for

all i, or pi ≥ 1 for all i. Prove that

n

∑
k =1

pkak ≤ max
1≤k≤n

(

ak

n

∏
i=1

pi +
n

∑
i=1,i 6=k

ai

)

.

When does equality hold?

Solutions by J.H. van Geldrop, G.W. Veltkamp, A.A. Jagers, H.J. Seiffert. Below is the

efficient solution by Seiffert. Under the given conditions we have that

pk − 1 ≤
( k−1

∏
i=1

pi

)

(pk − 1)

where the empty product is understood to be 1. Summing over all k = 1, . . . , n gives

n

∑
k =1

(pk − 1) ≤
n

∏
i=1

pi − 1,

with equality only if all pi are equal to 1. Take m to be the minimum of all ai in case

all pi ≤ 1 and the maximum of all ai in case all pi > 1. We obtain from the previous

inequality that n

∑
k =1

(pk − 1)ak ≤ m
n

∑
k=1

(pk − 1) ≤ m
( n

∏
i=1

pi − 1
)

,

which is equivalent to the desired inequality. There is equality if and only if for all but

one index we have pi = 1 and for the remaining index ak = m.

Problem 971 (H. Alzer)

Let x and y be distinct positive real numbers amd r a nonnegative real number. Define

Lr(x, y) =

[

xr − yr

r(x − y)

]1/(r−1)

, (r 6∈ {0, 1})

L0(x, y) =
x − y

log(x/y)
,

L1(x, y) =
1

e

(

xx

yy

)1/(x−y)

.

Prove that for arbitrary nonnegative numbers r, s, t satisfying r < s < t we have that

Lr(x, y)t−sLt(x, y)s−r
< Ls(x, y)t−r .

Solutions by G.W. Veltkamp and A.A. Jagers. Below is the efficient solution by Jagers.

We have to show that Lr(x, y) is strictly concave in r. Let x/y = e2u and define f (0) = 0

and f (r) = log sinh ru
ru for r 6= 0. Then

log Lr(eu , e−u) =
f (r) − f (1)

r − 1
=

1

r − 1

∫ r

1
f ′(t)dt

and Lr(x, y) =
√

xyLr(eu , e−u. Hence it suffices to show that f ′ is strictly concave on

[0, ∞). Consider the function g(s) = cosh(s) −
(

sinh s
s

)3
, for which it is straightforward

to verify that g(s) ≤ 0. Then f satisfies the differential equation u−3 sinh3(ut) f ′′′(t) =

2g(ut) which completes the proof.


