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Solutions to the problems in this section can be sent

to the editor — preferably by e-mail. The most

elegant solutions will be published in a later issue.

Readers are invited to submit general mathematical

problems. Unless the problem is still open, a valid

solution should be included.
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Problem 10 (Open problem, by Frits Beukers)

Let a, b, c be integers such that the symmetric matrix




0 a b

a 0 c

b c 0





has three integer eigenvalues. Prove, or give a counter example to, the following state-

ment: either abc = 0 or (a2 − b2)(a2 − c2)(b2 − c2) = 0.

The following problems 11–14, proposed by Hendrik Lenstra, are related to the abc-

conjecture. An abc-triple is a triple of pairwise coprime positive integers a, b, c with

a + b = c for which the product r of the distinct prime numbers dividing abc satisfies

r < c. For example, the equality 32 + 49 = 81 gives rise to the abc-triple 32, 49, 81, with

r = 2 · 7 · 3 = 42 < 81 = c. The abc-conjecture states that (log c)/ log r tends to 1 as the

limit is taken over all abc-triples. It is apparently not even known whether there is an

infinite set of abc-triples for which (log c)/ log r tends to 1.

Problem 11

Prove that there are infinitely many abc-triples.

Problem 12

Prove that there are infinitely many abc-triples for which a is equal to a given positive

integer.

Problem 13

Let m be a positive integer. Prove that there is an abc-triple with the property that any

odd prime number dividing abc exceeds m.

Problem 14

Let n be a positive integer. Prove that there exist n different abc-triples with the same

value of c.

Solutions to volume 1, number 2 (June 2000)

Problem 4

Eleven journalists have their own bit of slander. They possess special telephones that

allow 3 men to communicate with each other. How many calls are needed to inform

everyone of everyone else’s information?

This is a variation on the Telephone Problem. The Telephone Problem is exercise 58 on page 32 of

Bollobás, Modern Graph Theory.

Solution by Aad van de Wetering (CBS, Voorburg): 8 calls. The journalists are A, B, C, et

cetera. The order of the telephone calls is given in a matrix.

A B C D E F G H I J K

1 1 1 2 2 2 3 3 3

4 4 4

5 6 7 5 6 7 5 6 7

8 8 8

One verifies that it takes at least 5 calls before one of the journalists gets all the infor-

mation. After 4 calls all 11 journalists are waiting for more information. After 5 calls 8

journalists are waiting, et cetera. So it takes 8 calls.
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Construct a countable, compact subset of the plane, not contained in a line, that intersects

no line in 2 points.

For any finite subset F of the plane there exists a line that intersects F in two points. This is

Sylvester’s problem. A line that intersects F in two points is called a Gallai line. Countable and

compact is as close to finite as an infinite set can get. There exist subsets V of the plane for which

every line is a Gallai line. It is an old problem in set theory whether V can be Borel. Khalid

Bouhjar (VU Amsterdam) has some results on his homepage http://www.cs.vu.nl/~kbouhjar

G.A. Kootstra (Broek op Langedijk) gives the following example, for some constant r 6∈ Z:

V =

{

(

− 1

2n + r
,

1

2n + r

)

∪
( 1

2n + r
,

1

2n + r

)

∪
(

0,
1

n + r

)

∪
(

0, 0
)

: n ∈ Z

}

.

Every line intersects V in 0, 1, 3 or infinitely many points. Kootstra remarks that this

example was given by Peter Borwein, Sylvester’s problem and Motzkin’s theorem for

countable and compact sets, Proc. Amer. Math. Soc. 90 (1984), no. 4, 580-584. Borwein

states that the example is ’from the folk literature’ and that ‘it would be interesting to

know if any others exist’.

Problem 6

Define an, for n ≥ 0 by a0 = 3, a1 = 0, a2 = 2 and an+3 = an + an+1 for all n ≥ 0. Show

that p|ap for every prime number p.

Solutions by Wim Luxemburg (Pasadena) and Frits Beukers (Utrecht). Let θ be a zero of

x3 − x − 1. Then θn+3 = θn+1 +θn for any integer n and we see that θn , n = 0, 1, 2, 3, . . .

is a solution of the recurrence. Let θ1 ,θ2 ,θ3 be the three zeros of x3 − x − 1. Then, by

linearity,
θn

1 + θn
2 + θn

3 , n = 0, 1, 2, . . .

again satisfies the recurrence. Moreover, one easily checks that the first three terms equal

3, 0, 2. Conclusion,
an = θn

1 + θn
2 + θn

3

for all n. Let now p be a prime. Beukers now uses the identity

Xp + Yp + Zp = (X + Y + Z)p

in the field Fp(θi) to derive

ap = θ
p
1 + θ

p
2 + θ

p
3 ≡ (θ1 + θ2 + θ3)

p ≡ a
p
1 ≡ 0 (mod p).

Hence p divides ap. Luxemburg uses a result of Schönemann (Crelle 32, (1846)) to obtain

this result. Beukers remarks that the converse statement, n divides an ⇒ n is prime, is

known to be false, but that the first counter example is very large.

Solutions to some problems of yore

The Problem Section of the previous series of Nieuw Archief ended rather abruptly, as

the solutions to Problems 950-979 had not yet been published. We apologize for letting

the contributors to the Problem Section wait for so long. There are several relentless

problem solvers, most notably, with descending number of solutions, A.A. Jagers (20),

H.J. Seiffert (14), G.W. Veltkamp (10), R.A. Kortram (10), J.H. van Geldrop (8), D. Con-

stales (6), R.H. Jeurissen (6), F.J.H. Barning (5), J. Boersma (5), and K.W. Lau (5). We thank

the originators of these problems for their contribution, but above all thanks are due to

Professor M.L.J. Hautus who has taken care of the Problem Section since 1980 and sus-

tained an average of ten problems per issue. Below are the solutions to the problems

950–960. Solutions to the remaining problems 961–979 will be published in the next issue

of Nieuw Archief.
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Let (ai), (bi), (pi) be positive real numbers for i = 1, . . . , n satisfying ∑n
i=1 pi = 1. Prove

the following statements:

• If (ai) and (bi) are both non-decreasing or both non-increasing. Then

n

∑
i =1

pia
2
i bi

n

∑
i =1

pibi +
n

∑
i =1

piaib
2
i

n

∑
i =1

piai ≤
n

∑
i=1

pia
2
i b2

i +

(

n

∑
i=1

piaibi

)

2
. (1)

• If (ai) and (bi) are non-decreasing and (bi) is non-increasing, then the reverse inequal-

ity is valid.

Solutions by H.J. Seiffert, R.H. Jeurissen, F.J.H. Baring, R.A. Kortram, G.W. Veltkamp.

H.J. Seiffert remarks that (1) is a special case of an inequality due to Bencze. The solutions

are similar. Below is R.H. Jeurissen’s solution. Using automatic index-summation, the

left-hand side L of (1) equals pi p jaibi(aib j + bia j), while the right-hand side R equals

pi p ja2
i b2

i + pi p jaibia jb j. Now R − L = pi p jaibi(ai − a j)(bi − b j). Check the sign of the

product (ai − a j)(bi − b j).

Problem 951 (W. Bencze)

Let D denote the unit circle in the plane and let A1 , . . . , An be points on D. Prove that

max ∏n
k=1 PAk ≥ 2, where PAk denotes the distance between P and Ak. The equality

holds if and only if the Ai form a regular polygon.

Solutions by D. Constales, A.N. ’t Woord, A.A. Jagers, R.A. Kortram. H.J. Seiffert remarks

that this is Problem Q852 of Math. Mag. 69 vol 3, 1996, posed by the same author. All

solutions involve complex variables and depend upon the equality

1

n

(

f (z) + f (ζz) + f (ζ2z) + . . . + f (ζn−1z)
)

= zn + f (0)

if f is a monic polynomial of degree n and ζ is a primitive n-th root of unity.

Problem 952 (P.J. de Doelder †)

Show that ∑∞

n=0
(1)n

(3/2)n

[

ψ(n + 3/2) −ψ(n + 1)
]

= 2 log 2, where (a)n = Γ(a + n)/Γ(a)

and ψ(a) = Γ
′(a)/Γ(a) and Γ denotes the gamma function.

Solutions by J. Boersma, A.A. Jagers, H.J. Seiffert, D. Constales. Solution by Constales.

Let x > −1 and n > 0. Express the Beta function in terms of the Gamma function

Γ(n + x + 1)Γ(1/2)

Γ(n + x + 3/2)
=
∫ 1

0

un+x

√
1 − u

du.

Let |α| < 1 and multiply byαn and sum over n to obtain

∞

∑
n =0

Γ(n + x + 1)Γ(1/2)

Γ(n + x + 3/2)
αn =

∫ 1

0

ux

(1 −αu)(
√

1 − u)
du.

Take the derivative with respect to x at x = 0

∞

∑
n =0

(

Γ
′(n + 1)Γ(1/2)

Γ(n + 3/2)
− Γ(n + 1)Γ(1/2)Γ(n + 3/2)

Γ(n + 3/2)2

)

αn =
∫ 1

0

log u

(1 −αu)(
√

1 − u)
du.

The left-hand side is −2 times the required sum. The right-hand side is an elementary

integral and taking the limit u → 0 gives the required solution.

Problem 953 (P. de Groen)

Prove that
f (t) =

∫ t

0

∫

∞

s
exp(s2 − u2)duds =

1

2
log t + C + O

( 1

t2

)

,
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Solutions by D. Constales, A.A. Jagers, J. Boersma, H.J. Seiffert, G.W. Veltkamp, Kee-Wai

Lau. The evaluation of the constant C requires some equalities between special functions

involving Euler’s constant γ, with the result that C =
log 2

2 + γ
2 . A.A. Jagers gives the full

asymptotic expansion of f ! Here is H.J. Seiffert’s elementary solution. Some calculation

gives that f satisfies the differential equation f ′ = 1
2t +

f ′′

2t . By integration we find that

f =
1

2
log t + C +

∫

∞

t

f ′′(s)

2s
ds =

1

2
log t + C +

∫

∞

t

∫

∞

s
exp(s2 − u2) duds.

Substitute u = v + t in this double integral to get

∫

∞

t

∫

∞

0

v

s
exp(−2sv − v2) dvds ≤

∫

∞

t

1

s

∫

∞

0
v exp(−2sv) dvds =

1

8t2
.

Problem 954 (M.L.J. Hautus)

Let R be an integral domain with identity 1 and let n > 1 be an integer. Denote the set of

n × n matrices with entries in R by Rn×n and define the matrix N ∈ Rn×n by

























0 1 0 . . . . . . 0

0 0 1 0
...

...
. . .

. . .
. . .

. . .
...

... 0 0 1 0

... 0 0 1

0 . . . . . . . . . 0 0

























.

Show that for a polynomial p(z) ∈ R[z] the equation p(X) = N has a solution in Rn×n if

and only of there exists a λ ∈ R such that p(λ) = 0 and p′(λ) is a unit in R.

Solutions by D. Constales, A.A. Jagers, G.W. Veltkamp. Below is the solution by D. Con-

stales. First observe that N is nilpotent Nn = 0. Define the polynomial q(z) = p(z + λ)

and denote p′(λ) = q1. Then q(z) = q1z + z2r(z). The problem is solved once we

find a matrix Y such that p(Y) = N, which is equivalent to a fixed point of Y →
q−1

1 (N −Y2r(Y)). Define Yk ∈ Rn×n recursively by Y0 = 0 and Yk+1 = q−1
1 (N −Y2

k r(Yk).

Then each Yk can be expressed as a polynomial sk(N) with zero constant term. One can

check that the k-th coefficient of sk stabilizes and by the nilpotency of N the sequence Yk

stabilizes for k ≥ n, which gives the required fixed-point.

To prove the necessity of the condition, observe that if p(X) = N then X commutes

with N. Let ei denote the standard basis. Then Xe1 belongs to the kernel of N, so Xe1 =

λe1 for some λ ∈ R. Check that p(λ) = 0. We now show that p′(λ) is a unit in R.

Expand p(z) around λ to get

N = p(X) = p(λ) + p′(λ)(X − λ) + O((X − λ)2) = p′(λ)(X − λ) + O((X − λ)2).

Since Ne2 = e1 and since (X − λ)e1 = 0 it follows that (X − λ)e2 belongs to the kernel

of N. So (X − λ)2e2 = 0. It follows that e1 = Ne2 = p(X)e2 = p′(λ)µe1, so µ is a unit in

R.

Problem 955 (J. van de Lune)

Let Q[x] denote the set of all polynomials with rational coefficients, which is a vector

space over Q. Define an operator on this vector space by

T f (x) = x f ′(x) − f (x + 1) + f (1).

Find all eigenvalues of T and describe an efficient procedure to compute the eigenpoly-

nomials.
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is the solution by R.H. Jeurissen. We restrict ourselves to monic polynomials and easily

find that 1 and x + a (a ∈ Q) and x2 − 2x are the only eigenpolynomials of degree ≤ 2.

Their eigenvalues are 0, 0 and 1, respectively. Comparing the highest coefficients of λ f (x)

and T f (x) and their values for x = 0 we find that an eigenpolynomial of degree n ≥ 2

has eigenvalue n − 1 and constant term 0. So all eigenvalues are natural numbers and

the eigenvalue 0 has no other eigenpolynomials then those in the subspace spanned by 1

and x. Let Pn denote the set of monic polynomials of degree n and let Pn,0 denote its

subset of polynomials with constant term 0. For n ≥ 3 define the mappings φn : Pn,0 →
Pn−1 and ψn : Pn−1 → Pn,0 by

φn : f (x) → f ′(x)

n
+

f ′(1)

n(n − 2)
and ψn : g(x) →

∫ x

0
g(t)dt − ng(1)x)

n − 1
.

A simple verification shows that

• ψn ◦φn = id;

• If f ∈ Pn+1 is an eigenpolynomial (for n) then so isφn( f ) (for n − 1);

• If g ∈ Pn is an eigenpolynomial (for n − 1) then so is ψn(g) (for n).

It then follows that all eigenvalues can be found from x2 − 2x by repeated application of

the ψn.

Problems 956, 957 and 958

These poblems did not receive a response from the readers of NAW and are skipped.

Problem 959 (B.M.M. de Weger)

Prove that forα ↓ 0.

∫ 1

0

dx
√

x(x +α)(1 − x)
= − logα + 4 log 2 +

α

4
logα + (

1

2
− log 2)α + O(α2 logα).

Solutions by S. Rienstra, A.A. Jagers, D. Constales, H.J. Seiffert, J. Boersma, G.W. Veltkamp.

Below is the solution by D. Constales. The substitution x = cos2 θ transforms the integral

directly to

2
√

(1 + a)

∫ π/2

0

dθ
√

1 − (1/(1 + a)) sin2 θ

=
2K(1/

√
1 + a)√

1 + a
.

in terms of the complete elliptic integral K. The required asymptotic expansion follows

at once from that of K(k) near k = 1. This can be found in section 8.12 and exercise 8.13

in Lawden, D.F., Elliptic functions and Applications, Springer Verlag, 1989.

Problem 960 (H. Alzer)

Let α > 1 be a real number. Find the smallest number cα such that for all non-negative

sequences (ak) with ∑∞

k=1(kak)
α

< ∞ we have (∑∞

k=1 ak)
α ≤ cα ∑∞

k=1(kak)
α .

Solutions by A.A. Jagers, R.A. Kortram, J. Boersma, H.J. Seiffert, J.H. van Geldrop. Below

is the solution by A.A. Jagers. The notation suppresses that the sums run over the index k

from 1 to ∞. The space ofα-summable positive sequences is denoted l+α = {(x1 , x2 , . . .) |
xk ≥ 0, ∑ xαk < ∞}. Then

cα = sup
(kαk)∈l+α

(

∑ ak

)α

∑(kαk)α
=

[

sup
(kαk)∈l+α

∑ kakk−1

{∑(kαk)α}1/α

]α

=
[

∑ k−β
]α/β

,

by Hölder’s inequality, where β is given by β−1 + α−1 = 1. In other words cα =

{ζ(a/(a − 1))}α−1 where ζ(s) denotes the Riemann zeta function.


