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Een eeuw wiskunde en werkelijkheid

Do mathematical

models tell the truth?

Waar een bezoek aan een planetarium al niet toe kan leiden. Toegepast wiskundige Gerke

Nieuwland belicht enige aspecten van wiskundige modellen die stellig de aandacht verdienen.

Hij leidt echter ook in diep filosofisch vaarwater waar hoge eisen aan de lezer worden gesteld.

Nieuwland beschrijft hoe een bezoek aan het planetarium van Eise Eisinga in Franeker hem

leidde tot de filosofische vraag naar de preciese relatie tussen een wiskundig model en de

erin gemodelleerde werkelijkheid. De opvattingen van Eisinga’s tijdgenoot, de Duitse filosoof

Immanuel Kant, impliceerden een oplossing: de werkelijkheid zoals wij die ervaren is in belang-

rijke mate een produkt van de menselijke geest en de in de natuurwetenschappen onthulde

wiskundige structuur van de werkelijkheid is die werkelijkheid zelf; een model is dan in het

algemeen een vereenvoudiging van (een deel van) die werkelijkheid. Na de introductie van

de niet-euclidische meetkunde door Gauss, Bolyai en Lobachevski, in de eerste helft van de

negentiende eeuw, was die oplossing in deze vorm niet langer houdbaar. Twee elkaar uitslui-

tende meetkunden kunnen immers niet alle twee dezelfde unieke werkelijkheid weergeven.

Nieuwland ziet vervolgens twee ontwikkelingslijnen. Enerzijds is er in de wetenschappelijke

en maatschappelijke praktijk een enorme toename van het gebruik van wiskundige modellen

varierend van macro-modellen voor de kosmos tot modellen die slechts een klein deel van de

werkelijkheid representeren. Anderzijds is er een grote filosofische hulpeloosheid met betrek-

king tot de relatie van de wiskunde tot de werkelijkheid. Niet ten onrechte zoekt Nieuwland

tenslotte een antwoord bij gerenommeerde Amerikaanse filosofen van de wiskunde. Paul Bena-

cerraf stelde in 1973 het probleem als volgt: Wil het begrip ‘wiskundige waarheid’ überhaupt

zin hebben, dan moeten wiskundige uitspraken ergens naar verwijzen in de werkelijkheid —

en de vraag is naar wat — en bovendien moeten wij die waarheid kunnen weten — en de vraag

is hoe we dat kunnen. In 1979 deed Penelope Maddy een alom bewonderde poging om de twee

vragen te beantwoorden. Ze betoogde dat aan onze intuïties met betrekking tot verzamelingen

een causaal perceptuele relatie met de ons omringende wereld ten grondslag ligt. In 1992

was Maddy echter weer terug bij af. In het volgende nummer van het Nieuw Archief besluit

Nieuwland zijn beschouwingen

Arces attigit igneas — he attained the lumi-

nary vaults of the heavens. This quotation

from the Odes of Horace is written over the

portrait of Eise Eisinga (1744–1828) in the

Townhall of Franeker, a township in Friesland

in the northern Netherlands. In the family

tradition, Eisinga became a woolcomber and

trader in worsted yarns, but he also shared

the family’s amateur interest in mathematics,

astronomy and building of mechanical instru-

ments. He received a rudimentary training

in elementary geometry, spherical trigonome-

try and cosmography, without access to prop-

er textbooks. In 1761 he assisted a well-

known instrument maker, who was a compe-

tent mathematician, at astronomical observa-

tions in the Frisian capital. This sufficed for

him to compute at the age of eighteen, prac-

tically from scratch, all the eclipses of the sun

and moon from 1763 to 1800.

In 1773 Friesland witnessed among the less

educationally privileged a general unrest, fed

in the marketplaces by popular singers and

pamfletteers, when a conjunction of four

planets and the moon in the sign of Aries

was predicted on the 8th of May of the next

year. A local clergyman kindly made it known

that such a portent spelled at least catastro-

phy, possibly phase 1 of the Last Judgment.

Eisinga, a devout Christian, coolly checked

the conjunction by computation and decid-

ed that the commotion would vanish if, and

only if, the fact that the Creator had designed

the universe along Copernican lines became

more generally appreciated. He then pro-

posed to his wife his plan to build a model

of the solar system hung from the ceiling of

her drawing room. She gave her permission

on condition that a termination date be fixed

in advance, and so he kept rigorously to a

seven-year schedule, doing the design, ma-

chining, construction work and painting all by

himself. The design of Eisenga’s Planetarium,

as it came to be known, was entirely original:

he had never seen such a thing or even read a

description.1 Moreover, the location chosen

posed many peculiar problems. Perhaps the

least was an unusual basic time unit, resulting

from a last-minute modification of the length

of the pendulum of the clockwork driving the

model, to keep the weight from moving to and

fro in his cupboard-bed. What challenged

Eisinga’s engineering skills was his decision

to build the hidden mechanism between the

beams supporting the ceiling and the upper-

story floor.

The orbits of the five planets as were then

known, and of the earth, are on the scale of
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the model sufficiently closely approximated

by circles, with the sun in the correct off-center

position. The orbital revolutions in the model

are in real time; the velocity is uniform, but

the variation of speed as a function of posi-

tion can be read off from a differential grading

of the circles. The height of the planetary or-

bit with respect to the ecliptica is indicated on

a curve along each of the circles, and the as-

cending and descending nodes are marked.

The lunar movement is modeled by the main-

ly wooden clockwork to a surprising average

accuracy of 0.7%, the moons of Saturn and

Jupiter are shown but do not move.

Further astronomical information is pre-

sented on the walls. There is a display of a

projection of the stellar hemisphere as cur-

rently observable from Franeker, with the so-

lar position on the ecliptica shown. Dials

present the times of sunrise and sunset, and

the position and phase of the moon, accurate

to the extent that solar and lunar eclipses can

be predicted.

The beauty of Eisinga’s brilliantly simple

solutions to all problems of display, engineer-

ing and approximation to the astronomical

data has been one of the marvels of Friesland

ever since. The Planetarium served its mak-

er’s intended purpose of harmonizing faith

and enlightenment. During his lifetime en-

trance was free and especially after the timely

publication of Van Swinden’s description it

was much visited by scientists, theologians

and laypersons. Eisinga lived to see his work

become a State monument in 1826.2

Eisinga’s planetarium is everybody’s idea

of a model. According to Merriam-Webster’s

Collegiate Dictionary the word is in use in En-

glish since 1575. No. 4 of this lemma’s def-

initions is a usu. miniature representation

of something, also appropriate is no.11: a

description or analogy used to help visual-

ize something (as an atom) that cannot be

directly observed. Webster would not count

the planetarium as a mathematical model3 ,

because this is given a more abstract conno-

tation in definition 12: a system of postulates,

data, and inferences presented as a mathe-

matical description of an entity or state of af-

fairs. Eisinga, on the other hand, would not

have objected to this adjective for his work.

What he modeled were the quantitive, ge-

ometrical and kinematical properties of the

physical world and this was in his time, and

long afterwards, for most people exactly what

mathematics was all about. Mathematical de-

scription, with its postulates and inferences,

suggests some interpretive distance from its

object, rather than the immediate view of re-

ality that Eisinga doubtless wanted to convey.

The untying of the Galilean knot that held

mathematics and reality together had already

begun during Eisinga’s lifetime. In 1781 Kant

had published the first, more idealist, version

of the Critique of Pure Reason. Faced with

the equally unpalatable alternatives offered

by a Leibnizean Platonism and a Lockean em-

piricism, he boldly took position in the midst

between the horns of this dilemma. He de-

cided to attack the problem of the structure

of thought itself by application of the new

scientific method of Galileo and Newton. As

a working hypothesis he proposed the view-

point that the temporal, spatial and causal

structures of the physical world were not the

given properties of an external reality, but in

fact necessary preconditions for human sensi-

bility, impressed by the mind onto amorphous

matter. Still shining through the nearly im-

penetrable formal discussions that were the

philosophical vogue of his time is the leading

idea: there is first primal matter senselessly

wandering through a chaotic universe — then

the inspiration of order and clarity enter into

this barren image through mathematical anal-

ysis.

Newtonian mechanics was the prime ex-

ample of the new science in Kant’s time and

remained so for nearly another century. By

1891 Heinrich Hertz had already provided the

experimental keystone to Maxwell’s electro-

magnetic theory. He then wrote the 29 page

introduction to The Principles of Mechanics4

in the Kantian tradition, a scientific testament

that was to become the seminal philosophical

text during the heyday of the era of classical

physics, and beyond. Around the beginning

of the twentieth century its basic ideas were

adopted by the last of the Kantians, the Mar-

burg school in philosophy. A transcendental

analysis of thought was supposed to show

that knowledge as embodied in the math-

ematized natural sciences is not a descrip-

tion of reality, but reality itself. Such a rari-

fied conception of reality would not have ap-

pealed to either Galileo or Eisinga, but the

implication of this viewpoint for the notion of

a mathematical model is clear. If the struc-

ture revealed in the mathematical analysis of

the physical world is reality itself, a model of

the physical world must involve a deliberate

simplification — in the sense that the contin-

uum model in fluid dynamics simplifies the

discrete, but mathematically awkward atomic

picture of kinetic gas theory. Today, although

many Kantian notions are still around in vari-

ous philosophical discussions of science (one

can think of ideas of Putnam, Dummett, Van

Eise Eisinga’s planetarium in Franeker

Fraassen), a return to a systematic neoKan-

tianism is only considered occasionally as a

feasible option in the aftermath of postmod-

ernism. However, Hawking’s beckoning ideal

of a Theory of Everything that will sound the

ultimate of physical reality, and will be the

gauge for all future models, is a relic of this

line of thought.

Arguably, Kant’s clearly defined position

influenced the course of science at least as

strongly by way of the negative reactions

it provoked. In 1826 N.I. Lobachevsky an-

nounced his hyperbolic geometry. He refused

to accept the Kantian view of mathematics

as a synthetic a priori judgment. Instead

he stated explicitly that, after the construc-

tion of his alternative geometry, the geomet-

rical structure of physical space must be con-

sidered an empirical matter. After Riemann,

Maxwell, Mach and Hertz, its definitive formu-

lation from the classical, macroscopic point of

view was laid down by Einstein.

Since Kuhn’s work5 , this episode in the

history of science has become the paradigm

case of a scientific revolution. Mathemati-

cians have been inclined to stress in this de-

bate the continuity in the history of ideas

rather than the conceptual overturn. Indeed,

what revolution, if the earlier mathematical

model is asymptotically retained as a limit-

ing case in the new theory? However, as

a philosophical stance Kuhn’s position has



408 NAW 5/1 nr. 4 december 2000 Do mathematical models tell the truth? G.Y. Nieuwland

Eise Eisinga

been widely accepted. The issue was already

raised before Lobachewski by Gauss, who had

put it in one word: he “doubted the truth of

geometry”. He used truth, of course, in the

classical sense of adequatio rei et intellectus.

Then, if the intellect can think of a catalogue,

instead of being offered the one Euclidean

structure, there is a twofold problem. One can

presumably be decided by science — which

option is applicable in the physical world. But

the other has no scientific answer — what is

the ontological status of the discarded alter-

natives? They cannot be true, that is: do not

correspond to a res. But, obviously, they also

cannot be called false. (In today’s technolog-

ical society one would be hard put to come up

with a mathematical concept without poten-

tial application, but this is the problem as it

appeared at the time.) From the beginning of

the twentieth century, the problem of the ex-

istence of mathematical entities dominated

the discussions in the philosophy of mathe-

matics for fifty years or so. Frege and Russell,

Brouwer, and Hilbert offered their conflicting

approaches, all of which were to be organized

at the end of this period in the imposing build-

ing of mathematical logic — as a branch of

mathematics, not philosophy. Traces of their

individual contributions, perhaps in a some-

what uneasy coexistence, can still be identi-

fied in a much more varied picture than any of

them could have imagined.

There is yet more to the model story than

Webster allows. Gauss never published his

theory, but Lobachewski also knew that his

geometry was a valid alternative only if free

of contradiction. Both men had to leave

the point open because the conceptual de-

velopment of mathematics at the time was

insufficient to give a formal proof. After

Riemann’s input, Beltrami (1860) and Klein

(1871) took on this problem and opened up

an entirely new way of mathematical thought.

They introduced a notion of model in the

sense of a mathematical representation de-

signed to study another mathematical struc-

ture. The construction of models of non-

Euclidean geometries embedded in Euclidean

space proved that if the latter theory was sup-

posed to be consistent, the former could not

fail to be so. Curiously, this also meant that,

if anyone wanted to maintain that the ‘nat-

ural’ or ‘real’ conceptual frame of the world

is Euclidean, there is no mathematical objec-

tion to do so. After Hilbert’s axiomatic stud-

ies, and Frege and Russell’s development of

mathematical logic, this approach paved the

way to a rigorous version of semantics. Intro-

duced as a linguistic notion in the 1890s, this

became a blanket term for methods with the

common denominator of comparing some-

thing with something else, in linguistics, log-

ic, science and conversation. The varied ap-

paratus also provided resources for the mod-

ern philosophical discussion of truth. In par-

ticular Tarski’s formal study of the truth con-

cept (1931) became after its English transla-

tion (1956) the focal point of much debate.

Such could be the meditations of a math-

ematician with a taste for history on a visit

to Eisinga’s planetarium. There is a philo-

sophical question she also might reflect up-

on: what is it, over and above the fact that his

dials still display accurate astronomical infor-

mation, that makes us feel: Eisinga had it

right. It is, I think, more than our recognition

over the centuries of the clear voice of sci-

ence in a world of obscurantism, let alone our

appreciation for a late manifestation of that

seventeenth-century idea: the Clockwork of

the Heavens. It is rather Eisinga’s modeling

of the solar system as a system. This was the

idea that gave access to the external view-

point in which the conjunction of lunar and

planetary objects is immediately revealed as

an apparent phenomenon. One indication

that he at least intuitively possessed the con-

cept is that in his model each of the planets

can be independently switched off the driving

mechanism.

A unified whole

The word system is, again consulting Web-

ster’s, in use since 1603, presumably more or

less in the modern sense of a regularly inter-

acting or interdependent group of items form-

ing a unified whole. It is worth our while to

look somewhat closer at this definition.

If a system can be identified as a unit, there

is implied an embedding in an environment,

with at least nominal interaction. If the reg-

ular interactions of the constituting items are

evolving in time, one can expect the whole

unit’s interaction with the environment to in-

volve temporal variation too. This means that

the definition is iterable. If a system can be

isolated from its background, it often pays to

look at the constituting items as systems in

their own right. That is: one is at liberty to

define subsystems, by keeping track of its in-

ternal and external interactions. On the oth-

er hand, any collection of items, with their

connecting interactions, can be rearranged

as the subsystems of a new supersystem. If

for the purpose on hand one decides to dis-

regard such a subsystem’s internal structure

and consider only its interactions with its en-

vironment as given, it is called a black box.

Of course, a system can be stationary, its in-

teractions then collapse into steady interface

conditions.

In this general sense, the systems con-

cept has become of almost universal applica-

tion. Arguably, it is the interplay of systems

thinking in science, technology and manage-

ment that marks the modern era of civiliza-

tion; through its computer implementation it

is said now to propel us into postmodernity.

However, historically the theoretical notion

took a remarkably long time to crystallize. Its

first implicit appearance in science was New-

ton’s conception of a dynamical system. In

systems language, Newton’s third law tells us

Heinrich Hertz
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that in a gravitational system, a force appears

as an interaction if a body is isolated as a sub-

system. The fact that the word was in use long

before Newton’s time points to the fact that in

engineering an implicit systems thinking was

already in place. Indeed, contemporary illus-

trations of machinery almost invariably show

enlarged details as subsystems.

It is interesting to note that this lead in

an implicit conceptual thinking of technology

over science was to remain for many years:

James Watt built a self-regulating energy sys-

tem some eighty years before a detailed theo-

retical analysis of a thermodynamical system

could be given. The mathematical idea of a

control system is of a yet later date.

Hertz was probably the first to develop a

clear philosophical conception of a mathe-

matical system as a representation of phys-

ical reality. He shows his Kantian colors in

that:6

“Hertz’s laws of nature are less descriptive

shorthand for experientially correlated per-

ceptions than prescriptive interpretive sym-

bolic systems in the Kantian sense.”

He talks of scientific concepts as the innere

Scheinbilder7 (mental virtual images) or sym-

bols we form of external objects. Such mod-

els should be logically consistent, or as Hertz

has it: permissable. Still in the Kantian spirit,

empirical content is then defined as a formal

condition on the modeling:

“the necessary consequents of the images in

thought are always the images of the nec-

essary consequents in nature of the thing

pictured.”

It is interesting to note that for this purpose

the system is considered as a black box: Hertz

emphasizes that this commutation relation

of modeling and output is the one and on-

ly condition on the model. We will never

know whether our conception is conformal to

things in any other than this one fundamental

respect — the Kantian Ding-an-sich remains

hidden forever. Hertz calls such a model cor-

rect.

Given two both permissable and correct

models, the one may capture more of the es-

sential relations8 of the external object than

the other: if so, it is more distinct. Of two

equally distinctive models, the most appro-

priate is the one that has “the smaller num-

ber of superfluous or empty relations — the

simpler of the two”. However, one need not

think of avoiding empty relations altogether:

images produced by our mind are “necessar-

ily affected by the characteristics of its mode

of portrayal”.

Hertz’ Kantian perspective was soon to be

abandoned by the majority of the philoso-

phers of science. Within twenty-five years

mental images as the concern of philosophy

became in general disrepute as being too

highly speculative. Language was thought

to offer better purchase on reality, and the

Continental philosophers following Heideg-

ger turned away from science altogether. Sci-

ence was the main concern of the philoso-

phers related to the Vienna Circle, many of

whom were to emigrate to the USA. Since

Hertzian mental models were no longer sci-

entifically respectable, they decided to scien-

tize the scientist by turning him into a black

box. Inputs were sense perceptions, the ex-

pected output was a logically structured lan-

guage, under the sole control of the Verifica-

tion Principle (or its later relaxations) — hence

logico-empiricism. The operationalist school

went still further in an attempt to strip away

the empiricist concerns by proposing the use

of theory as a bare tool mimicking measure-

ment, without further mentalistic trimmings.

They had to give up an unequal struggle with

the advent of quantum theory and its con-

ceptual intricacies, including a subtle theo-

ry of measurement. These positivist schools

took their cue from Mach and Hertz, insisting

on minimization of ontological commitment.

They got at least this point — Occam’s razor

— generally accepted.

The notorious difficulties of quantum me-

chanics for a realistic philosophy of science

made the attempts to guarantee the objec-

tivity of science in an empiricist and logi-

cist metatheory dominate the field until the

1960s. However, also logico-empiricism was

not to remain uncontested. Kuhn9 declared,

after inspection of many Hertzian boxes in the

sciences of earlier and modern times, that

their contents seemed to be the result of the

vagaries of history as much as anything else.

The same message came from Lakatos10 , who

reviewed the historical development of math-

ematical theories. In reaction, a revival of the

realist movement11 stressed that the fault had

been Hertz’s all the time: the sole condition

on his box should have been the at least ap-

proximate truth of its contents. On the con-

trary, Quine, who renewed the logical empiri-

cist tradition in the second half of the century,

kept to the physicalist position that if the sci-

entists of today think the contents of any box

is it, the question after its truth is devoid of

sense.

Thus, at the beginning of a new century, the

use of mathematical models is daily practice

in management, engineering, science and

scholarship, without raising controversy of

any import among its practitioners. At the

same time, consensus among philosophers

as to the relation of all this to the world, the

mind, to language or to a responsible soci-

ety, is still conspicuous by its absence. Such

an evaluation suggests a momentary return to

the practical philosophy of Eise Eisinga.

In the discourse with the world of his times,

he did without mental images, sense data,

or any other projection of purported universal

compass. He began with deliberate judgment

to select a specific context — for his further

purposes it sufficed to model the purely kine-

matical relations of the solar system. Then,

he listened to the best available experts of his

time, interpreting information received to the

best of his own lights. Next, he built his mod-

el, taking into account the interests of other

parties — first of all his wife’s. He had not the

slightest doubt that in all this he was dealing,

in so far as was his concern, with the world as

he knew it. On the other hand, he felt not in

need of any metatheory to found this convic-

tion. Or so one might suppose. In the judg-

ment of his Frisian contemporaries he had in

doing so reached the vaults of the heavens —

and we still can agree.

In the remainder of this article I try to de-

velop such a point of view in a discussion with

some recent voices in the philosophy of math-

ematics.

To be or not to be

Some years ago, Penelope Maddy published a

remarkable paper: The Legacy of ‘Mathemat-

ical Truth’.12 The title refers to a much quoted

article13 published in 1973 by the Princeton

philosopher Paul Benacerraf. Taken together,

these articles comment on a major part of the

discussions in the philosophy of mathematics

in the second half of the twentieth century.

Benacerraf’s paper was one of a number at

the time that put shadows of doubt on a scene

of prevailing philosophical optimism: the

confidence that with the advent of a scientific

philosophy, the old Kantian criterion for philo-

sophical health, assured progress, could fi-

nally be met. Within a circle of one hundred

miles radius was assembled a company of

philosophical talent perhaps unprecedented

in history, and while admittedly it was impos-

sible that Gödel, Church, Carnap, Hempel,

Quine, Putnam and Chomsky could simulta-

neously be right, between them these gen-

tlemen could be relied upon to solve most
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Penelope Maddy

of the major philosophical problems still ex-

tant. Skeptical questions had already been

raised by Kuhn14 and Lakatos15 . However,

what made Benacerraf’s criticism disturbing

was that this was a palace revolution, not one

engaged in by parties bitten by the bug of an

antiscientific historicism.

He began his argument by putting down

two minimum conditions for the discussion

of mathematical truth. Both require that a

scientific account of truth obtains.

Condition 1 is, in the philosophical vo-

cabulary, the ontological condition. That is,

mathematical objects should be as much part

of “the furniture of world” as are the familiar

objects of everyday experience. Benacerraf’s

famous example is:

a. There are at least three large cities older

than New York.

b. There are at least three perfect numbers16

greater than 17.

If both sentences are to be ‘true’ in a sense

that can be scientifically upheld, they must

reduce to the same canonical form — a logi-

cal standard operation in terms of existential

quantifiers, variables and predicates. Obvi-

ously, this is not the case if, e.g., one denies

that a number is the name of an object. Now,

(a) is true if there are in fact cities that stand

in a certain relation to each other, and Be-

nacerraf has become convinced that the same

sort of truth condition should be applicable to

(b). That is, mathematical truth must be ana-

lyzed by (an elaboration for natural language

of) Tarski’s semantical theory of truth.17

Condition 2 is what philosophers call the

epistemological condition: we must have ac-

cess to the truth. If there be mathematical

truths, at least some of them should be know-

able in the same way other truths about the

world can be known. Specifically, says Be-

nacerraf, a causal theory of knowledge should

apply, of the same sort that accounts for our

knowledge of medium-sized physical objects.

Thus,

“for X to know that X is true requires some

causal relation to obtain between X and the

referents of names, predicates and quantifiers

of S.”

Benacerraf emphasized that in a reasonable

theory of mathematical truth both conditions

should be met — in accord with the old Kan-

tian demand of a balance between the noetic

and the epistemic.

What has been called his dilemma begins

where he lets these conditions suggest a dual

typology of philosophies of mathematics. In

type 1, mathematical truth is tied to the ‘ob-

vious semantics’ of mathematical language,

but defined independent of any question of

how to be decided upon; in type 2, the truth

concept is made dependent on epistemic and

syntactic considerations and related, e.g., to

proof theory or implicit definition. He then re-

viewed several of the philosophies of mathe-

matics current in the 1960s, to conclude that

all of them could be classified as either of

type 1 or 2 — that is, none of them gave both

conditions 1 and 2 their balanced and proper

due. Most prominently appeared type 1, in

particular the standard view: Platonism. This

is the doctrine that mathematical entities —

sets, dynamical systems — exist, like physical

entities, independently of human language or

cognition. It passes of course condition 1 with

flying colors, but must be inherently weak on

condition 2 — in fact, if mathematical entities

exist only up there in the sky, how on earth are

we to causally interact with them? Gödel, Be-

nacerraf’s arch-Platonist, concludes from the

awareness of mathematical experience to a

special human faculty to cognize mathemati-

cal form, but for most philosophers this is one

too fast. On the other hand, in type 2 of math-

ematical truth theory (Hilbert’s, Hempel’s) the

truth conditions for (a) and (b) must come out

as fundamentally different - so how to tie up

the purported mathematical truth to the com-

mon or garden variety?

Of course, Benacerraf’s dilemma immedi-

ately translates into a discussion of the status

of mathematical models. On type 1 theories

of mathematical truth, there is a dynamical

system for the course of the planets, or for the

antics of the economy, because such systems

have all the time been sitting ‘out there’ in the

physical world, to be discovered by stripping

off their phenomenal disguise. However, if

asked to put up an explanation how one came

to know this much, there is trouble ahead if

even strong intuitions are not taken as an an-

swer. Philosophies of type 2 are considerably

easier on the nerves. The mathematician is

held to construct a model, supply existence

proofs of solutions, perhaps devise means for

practical computation — this is already a bor-

derline case! — but there his responsibilities

rest. All resemblance of the product to ac-

tual situations or persons is fortuitous, and

any buyer proceeds entirely at her own risk.

By pinpointing this noncommittal attitude the

theory might also explain why, in the bustle

of the present day global market place, there

is some difficulty in keeping the business of

mathematics going.

Enter Maddy. In 1979 she wrote an very

interesting defense of mathematical realism

along Benacerraffian lines: Set Theoretic

Realism.18 Cantor and Gödel have made sets

the basic furniture of the mathematical uni-

verse, and so the Zermelo-Fraenkl axioms de-

fine a natural metalanguage for a mathemat-

ical object language, to obtain standardly a

Tarskian truth theory. What now had to be

done was to meet Condition 2, or alternative-

ly, as empiricists prefer, to offer a causal the-

ory of how sets are perceived. Starting from

the homely example of three eggs in a car-

ton, two of which are needed to bake a cake,

she worked up to the thesis that Gödel’s ac-

count of a mathematical intuition of sets is

in fact supported by a causal perceptual rela-

tion. In her own assessment, the case was not

proven, but at least made plausible by calling

to her aid work by Kripke on linguistic refer-

ence, by Pitcher on psychology of perception

and by Goldman on justification of intuitive

belief.

Now on to her 1992 paper. Looking back

on Benacerraf’s article, her first remark is that

Benacerraf’s hope for causal theories of ref-

erence and knowledge, and her own for such

a theory of perception, have not materialized.

Indeed, such expectations were common in

analytic philosophy in the 1970s. The process

of disenchantment has been vividly described

by Putnam19 , who earlier was one of the main

advocates of this viewpoint. However, Maddy

goes on, also under the later regime of various

other theories of reference and truth, Benac-

erraf’s dilemma, read as a critique of Platon-

ism, has shown remarkable resilience. All the

same, she has come to the amazing conclu-

sion that:

“as a challenge to Platonism it has become ir-

relevant in the absence of a strong argument

for Platonism.”

Like Gauss, who doubted the truth of geome-

try, she now doubts the truth of mathematics

— and belief in its truth is certainly prior to any

attempt to embark on Benacerraf’s project.
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Ground for belief in the truth of mathemat-

ics for philosophers of many persuasions is

the indispensability argument launched by

Quine and elaborated by the earlier Putnam.

Quine’s argument is naturalist and physical-

ist: if mathematical physics needs set theory

to “limn the true and ultimate structure of real-

ity”, we are committed to an ontology of sets,

because beyond physics there is no first phi-

losophy. Putnam’s version of the argument,

deplored by him at a later date, was more in

the realist tradition: if sets are indispensable

for fundamental science, they must be ‘true’

in the sense of “correspond to the facts of the

world”.

But this is what now has become question-

able for Maddy. She discusses the theories

of the continuum models of solids, fluids and

electro-magnetic media. Between them they

constitute a major part of our scientific con-

trol over the world around us, and most will

agree that the nominalist thesis20 that such

mathematical theories are dispensable is an

interesting intellectual exercise, but borders

on sophistry. Still, these theories’ ontology

is flagrantly false. At this point in the discus-

sion one might still argue that in principle a

conceptual repair action could be undertak-

en — along the well-known lines of obtaining

the conservation laws of fluid mechanics as

an approximation, averaging the equations

of kinetic gas theory. The philosophical im-

plementation of this idea is the introduction

of approximate truth. Such a move has been

proposed by Boyd21 as appropriate in a real-

ist naturalized epistemology: he takes truth

as an empirical measure of the relative his-

torical success of scientific theories. How-

ever, if approximate truth, taken as a meta-

physical notion, sounds already rather fishy

on the level of the phenomenal theories, on

the fundamental level the notorious concep-

tual difficulties of harmonizing the relativistic

and quantum structures of the world have put

in doubt the whole idea of an ontology of sets

of the space-time continuum. In fact, the at-

tempt to give a naturalized account of even an

approximate truth of our theories of the ulti-

mate structure of physical reality seems beset

with circularities — as is admitted by Boyd.

Maddy’s falling from her metaphysical re-

alist beliefs is in itself not remarkable — she

is neither the first nor will she be the last to

do so. What remains slightly worrying is the

idea of a philosopher of mathematics, at least

at the beginning of her career, patently un-

familiar with the ways of thinking in applied

mathematics. More interesting is the point

she makes in passing, the fact that at the end

of the century the naturalist projects of the

1970s to provide causal theories of percep-

tion or correspondence truth have generally

been abandoned. This does not mean that

the study of perception as a branch of cogni-

tive science has been given up — far from it.

But the ideas for the design of a philosophi-

cal metatheory on a causal basis, overarching

all of science, became a forlorn hope. In a

nutshell: the reason, as in various places ex-

plained by Putnam22 , is that perception can-

not be analyzed in systems terms, as a purely

perceptual input to be processed by the brain;

in fact perception inextricably involves some

degree of judgment, and this is not a causal

notion. As Maddy remarks, realism is back

where it started — one metaphysical option

competing with physicalism, idealism, nomi-

nalism. Currently, all of these are still more

or less live philosophical options. More or

less, because most of the younger philoso-

phers of science have lost the taste for the

grand vista and specialize their view to one of

the sciences: mathematics, physics, biology,

often taking historical or sociological inroads.

The latter is also the moral of the story for

Maddy: at the end of her article she advises

philosophers of mathematics to concentrate

on the practice of mathematics. And so the

real question turns out to be: if a metatheory

of science is hard to get, perhaps illusory, why

do we need one in the first place? k
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