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Oscillations of the Taylor
polynomials for the sin function

The n-th order Taylor polynomial of y = sin x approximates the

oscillations of this function, but it can have at most n zeros. In this

note, it is shown that asymptotically for n → ∞, it has about 2
πe n

zeros. Dedicated to my son Tilman

With the advent of graphing calculators, it has become a nice and

rather easy activity to plot Taylor polynomials and to check how

well or bad they approximate a given function. After having done

that up to some degree, say N ≤ 10, the more mathematically

minded students wonder what happens in the limit of large N.

The remainder formula of the Taylor series gives an upper bound

for the error, which one expects to be of the right order of mag-

nitude. In this note we get to more precise information about a

specific example. We have chosen the function y = sin x with its

infinitely many zeros. But its N-th MacLaurin polynomial PN can

have at most N zeros. How much of that “ability to oscillate” is

actually occuring? We prove

(1)lim
N →∞

cN

N
=

2

πe
,

where cN is the number of real zeros of PN , counting their multi-

plicities.

The easier part is the lower bound for the number of zeros. Us-

ing the remainder term of the Taylor series, this is done in Lem-

mas 1 through 3. Lemma 4 through 9 produce an upper bound.

One has to rule out extra oscillations of the Taylor polynomials

beyond the natural oscillations from the trigonometric function.

To this end, we use an argument well known for the comparison

of solutions of Sturm Liouville problems (see e.g. [1] p.208).

The 2n + 1-th order MacLaurin polynomial of the function y =

sin x is
(2)P2n+1(x) =

n

∑
k=0

(−1)k x2k+1

(2k + 1)!
.

To avoid some complications arising from the alternating signs,

we assume N = 4n + 1. The case N = 4n − 1 is of course exactly

similar.

The lower bound

This is the easier part. We need Lemmas 1 through 3.

Lemma 1. P4n−1(x) < sin x < P4n+1(x) for all x > 0 and n ∈ N.

Proof. This is straightforward to get by repeated integrations,

starting with the estimate sin x < x for all x > 0. �

Lemma 2. If for all 0 < x ≤ (2m − 1
2 )π and any m ∈ N

(3)P4n+1(x) − P4n−1(x) ≤ 1,

then (4)c4n+1 ≥ 4m + 1.

Proof. Because of (1) from Lemma 1, the assumption (2) implies

(5)0 < P4n+1(x) − sin x < 1

for all 0 < x ≤ (2m − 1
2 )π . At xk = (2k − 3

2 )π and zk =

(2k − 1
2 )π with k = 1, 2, · · · , m, the sin function takes its maxi-

mal and minimal values +1 and −1. Hence estimate (6) implies

P4n+1(xk) > 1 and P4n+1(zk) < 0. By the intermediate value

theorem, the polynomial P4n+1(x) has at least 2m − 1 zeros in

the interval ( π
2 ,

(2m−1)π
2 ) and a further bigger zero occurs since

P4n+1(x) tends to +∞ for x → ∞. Now the assertion follows

since P4n+1(x) is odd. �

Lemma 3. We have c4n+1 ≥ 1 + 4

⌊

1
4 +

4n+1
√

(4n+1)!
2π

⌋

. (6)

Proof. For 0 < x ≤ 4n+1
√

(4n + 1)!, we estimate

P4n+1(x) − P4n−1(x) =
x4n+1

(4n + 1)!
≤ 1.

Assumption (4) of Lemma 2 holds with m ∈ N the largest inte-

ger such that (2m − 1
2 )π ≤ 4n+1

√

(4n + 1)!. Hence (5) implies the

estimate (7) to be shown. �

Proof of the lower bound. To finish the proof, we still need

(7)lim
N →∞

N
√

N!

N
=

1

e
,
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which is an easy consequence of Stirling’s formula. Alternatively,

one can get (8) from Polya and G. Szego [2], part I chapter 1.1,

number 69. In the limit n → ∞, the lower estimate (7) implies

lim inf
n →∞

c4n+1

4n + 1
≥ lim inf

n→∞

2 4n+1
√

(4n + 1)!

π(4n + 1)
=

2

πe
. �

The upper bound

It needs a bit more work to get an upper estimate for the number

of zeros. In Lemma 4 through 6, we show that the Taylor poly-

nomial has at most two zeros per period. In Lemmas 7 through

9, we get a sharp upper estimate for the largest zero of the Taylor

polynomial.

Lemma 4. All zeros of the polynomial P4n+1 have at most multiplicity

two. If x > 0 and P4n+1(x) = P′
4n+1(x) = 0, then P4n+1(z) > 0 for

z 6= x and |z − x| small enough.

Proof. Let x > 0 be a double zero of P4n+1. Because of

P′′
4n+1(x) + P4n+1(x) =

x4n+1

(4n + 1)!
> 0,

the multiplicity of the zero cannot be higher than two and P4n+1

assumes a local minimum at x. �

Lemma 5. If 0 < a < b are two successive zeros of P4n+1 and

P4n+1(x) > 0 for all x ∈ (a, b), then b − a > π .

Proof. We use Green’s formula

∫ b

a
[( f ′′ + f )φ − f (φ′′ + φ)] dx =

[

f ′φ − fφ′]b
a

for the functions f = P4n+1, φ = sin
π(x−a)

b−a and get

∫ b

a

[

x4n+1

(4n + 1)!
− P4n+1(x)

(

1 − π2

(b − a)2

)]

φ(x) dx = 0.

Since φ(x) > 0 and P4n+1(x) > 0 for a < x < b, we conclude that

b − a > π . �

Lemma 6. Let XN be the largest zero of the Taylor polynomial PN(x).

Then we have
(8)c4n+1 ≤ 1 + 4

⌈

X4n+1

2π

⌉

.

Proof. The ceiling term is the minimal natural number m such that

2πm > X4n+1. There are at most two zeros of P4n+1 in each of the

m intervals (π , 2π), (3π , 4π), . . . up to ((2m − 1)π , 2mπ), which

include all positive zeros. Hence, by symmetry, this polynomial

has at most 1 + 4m real zeros. �

It remains to get a precise upper estimate of X4n+1. Lemma 7 the

first natural attempt. The reader should convince himself that it is

not strong enough to get the final result, but Lemma 9 indeed is.

Lemma 7. If x > 0 and x2 ≥ 4n(4n + 1), then P4n+1(x) > x > 0.

Proof. We group the terms of the polynomial P4n+1 to positive

pairs to get

P4n+1(x) = x +
n

∑
k=1

x4k−1

(4k − 1)!

[

x2

4k(4k + 1)
− 1

]

> x > 0. �

Lemma 8. If x > 0 and P4n+1(x) − P4n+5(x) > 1, then

P4n+1(x) > 0.

Proof. Lemma 1 implies sin x < P4n+5(x) < P4n+1(x) − 1 and

hence P4n+1(x) > 1 + sin x ≥ 0. �

Lemma 9. If
4(8n+5) x4n+3

(4n+5)!
≥ 1, then P4n+1(x) > 0.

Proof. We distinguish the cases (i) x2 ≥ 4n(4n + 1) and (ii) x2
<

4n(4n + 1). In the first case, the result follows from Lemma 7. In

the second case, we estimate

P4n+1(x) − P4n+5(x) =
x4n+3

(4n + 3)!

[

1 − x2

(4n + 4)(4n + 5)

]

>
x4n+3

(4n + 3)!

[

1 − 4n(4n + 1)

(4n + 4)(4n + 5)

]

=
x4n+3 4(8n + 5)

(4n + 5)!
≥ 1,

and use Lemma 8. �

Proof of the upper estimate. Lemma 9 implies

X4n+1 <
4n+3

√

(4n + 5)!

4(8n + 5)
,

and using (10), and once more Stirling’s formula or (8), we get in

the limit n → ∞

lim sup
n →∞

c4n+1

4n + 1
≤ lim

n→∞

2 4n+3
√

(4n + 3)!

π(4n + 1)
4n+3

√

(4n + 4)(4n + 5)

4(8n + 5)

=
2

πe
. �
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