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This is the extended text of the lecture given by Peter Sarnak at the

Kloosterman Centennial Celebration in Leiden on 7 April 2000. Sar-

nak describes Kloosterman’s seminal contributions to the theories

of both quadratic and modular forms, as well as the impact of these

works on modern developments.

It is an honor and pleasure for me to give this lecture at this cen-

tennial celebration of Kloosterman’s birth. I will discuss Kloost-

erman’s foundational and far reaching contributions to the the-

ory of quadratic and modular forms and related number theo-

ry. I also follow some of the themes introduced by Kloosterman

through to present day research, showing his remarkable influ-

ence on the subject. Some of what I say intersects with the reports

of Springer and Heath-Brown; this is quite natural since these

works of Kloosterman are of wide interest.

Representing integers by quadratic forms

A basic problem concerning the arithmetic of quadratic forms is

Hilbert’s problem 11. It asks which integers in a number field

K are represented by a given integral quadratic form F defined

over K? For example, if K = Q and F(x) is A(x) = x2
1 + x2

2 or

B(x) = x2
1 + x2

2 + x2
3 or C(x) = x2

1 + x2
2 + x2

3 + x2
4, the answer has

been known for a long time (Fermat, Legendre, Lagrange). For

B(x) an integer m > 0 is represented by B iff m 6= 4a(8b + 7) iff

B(x) ≡ m(mod ℓ) is solvable for every ℓ > 1 (or as we will say the

equation F(x) = m is solvable locally integrally). For C(x) there

are no congruential obstructions and every positive m is a sum of

four squares.

Hardy and Littlewood introduced the so called ‘circle method’

to study asymptotically the number of solutions to certain dio-

phantine equations and, in particular, the sum of 5 (or more)

squares:
F(x) = x2

1 + x2
2 + x2

3 + x2
4 + x2

5 = m. (1)

Their answer takes the form

R5(m) ∼ µ∞(m) ∏
p

δ(p, m) as m → ∞. (2)

Here R5(m) is the number of integral solutions in (x1 , . . . , x5) to

(1), and µ∞(m) measures the solutions over R to (1) while δ(p, m)

measures the density of solutions to (1) modulo (pℓ), as ℓ → ∞

(i.e. the density of p-adic solutions).

Kloostermans Sums

In his 1924 dissertation [19] Kloosterman developed the circle

method to deal with a general positive definite diagonal form

F(x) in 5 or more variables (i.e. F(x) = a1x2
1 + · · · + a5x2

5, a j pos-

itive integers). He obtains an asymptotic formula similar to (2)

from which one concludes that given such an F there is a constant

CF (effectively computable) such that if m > CF then F(x) = m

has an integer solution x iff F(x) = m is solvable locally integral-

ly. For m small this local to global principle may fail, also note

that this representation problem for any given m is clearly a finite

one.

Kloosterman then turned to the case of four variable diagonal

quadratic forms, which lies much deeper. His 1926 paper [20] is

a landmark contribution to the circle method. Like many great

papers it contains a number of novel ideas. Firstly he introduces

the process of ‘levelling’ (a term introduced by Linnik [27]) which

involves collecting the contributions of Farey arcs in the circle

method, which have centers with a common denominator c (for a

recent and useful variant of this process see [7]). Second, in order

to achieve cancellations via the levelling process, Kloosterman in-

troduced his famous ‘Kloosterman Sum’: For m, n, c > 1

S(m, n, c) := ∑
x mod c
xx̄≡1(c)

e2π i( mx+nx̄
c ) . (3)

For c = c1c2 , (c1 , c2) = 1, he shows that

S(u, vc2
2 + v′c2

1 , c) = S(u, v, c1)S(u, v′ , c2). (4)

The estimation of S is then easily reduced to the case of c being a

prime p. Finally, Kloosterman establishes the nontrivial estimate

|S(m, n, p)| 6 E p3/4 (5)
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for an absolute constant E and where we have assumed that not

both m and n are divisible by p (here the trivial bound is p − 1).

With these ingredients Kloosterman goes on and extends his

results about positive definite diagonal integral forms in five vari-

ables to four variables — a striking achievement. It is perhaps

worth recalling his method of proof of (5), which is elementary.

He calculates explicitly the fourth moments ∑
m mod p

(S(m, 1, p))4,

which turn out to be a polynomial of degree 3 in p. From this

(5) follows immediately. The fact that the exponent of 1/2 is the

sharpest possible in (5) (for general m and n), also follows. An

attempt to improve on (5) by considering the higher moments

B(k, p) =
1

p ∑
m mod p

(

S(m, 1, p)√
p

)

2k
(6)

was carried out by Salié [32]. He showed that B(k, p) is related

to counting the number of solutions over Fp (the field with p ele-

ments) to
x1 + x2 + · · · + xk = 1

x−1
1 + x−1

2 + · · · + x−1
k = 1

}

(7)

For k > 8 this is no longer elementary (see below).

Modular forms

Kloosterman was well aware that his results above are closely re-

lated to the problem of estimation of Fourier coefficients of cusp

forms in the theory of modular forms. A holomorphic form of

even integral weight k > 2 for a (congruence) subgroup Γ of the

modular group SL(2, Z), is a holomorphic function f (z) defined

on H = {z = x + iy|y > 0} satisfying

f

(

az + b

cz + d

)

= (cz + d)k f (z), for

(

a b

c d

)

∈ Γ . (8)

It has a Fourier expansion at infinity (and at the other cusps of

Γ\H) taking the form

f (z) =
∞

∑
n=0

a f (n)e2π inz . (9)

f is a cusp form if a f (0) = 0 (and similarly for expansions at the

other cusps).

Now given the quadratic form F the theta function

θF(z) = ∑
m∈Zn

e2π izF(m) :=
∞

∑
m=0

RF(m)e2π imz (10)

is a modular form of weight n/2 for a suitable congruence sub-

group Γ . The asymptotic behavior of the representation numbers

RF(m) is reduced to estimating the Fourier coefficients of cusp

forms. The “trivial’ bound for the coefficients of a cusp form in

(9) is
|a f (n)| 6 c f n

k
2 (11)

with c f a constant depending on f . The Ramanujan Conjecture

[31] asserts that for ε > 0 there is c f ,ε such that

|a f (n)| 6 c f ,εn
k−1

2 +ε . (12)

For forms F in five or more variables (i.e. k > 2) the trivial bound

(11) suffices to settle the representation problem for F, however

for four variables (11) does not suffice. Thus Kloosterman’s 1926

paper involves obtaining a nontrivial estimate towards the Ra-

manujan Conjectures. In his 1927 paper [21] Kloosterman applied

his method of levelling directly to a cusp form f , together with

his bounds for the Kloosterman sums, to obtain the first estimates

towards the Ramanujan Conjectures: For k even,

|a f (n)| 6 c f n
k−1

2 + 3
8 . (13)

This is perhaps one of the first instances in this subject (of which

there have been numerous successors) where, while the sharp

bound is not achieved, a nontrivial bound is established and it

suffices to resolve the problem at hand.

The solution of the Ramanujan Conjecture above had to await

developments by Eichler [10] (for weight 2) and Ihara [13] (for

higher even weight) which reduced the problem to the Riemann

Hypothesis for curves over finite fields (for weight 2) and the Weil

Conjectures for varieties over finite fields (in general). The solu-

tion of these function field analogues of the Riemann Hypothesis

were established by Weil [39] for curves and by Deligne [5] in gen-

eral.

Similarly the sharp estimation of the Kloosterman sum

|S(m, n, p)| 6 2
√

p (14)

was shown by Hasse [11] and Weil [39] to follow from the Rie-

mann Hypothesis for curves over finite fields. In particular the

Kloosterman sum has an interpretation as a trace of Frobenius on

a suitable cohomology group. With the developments by Deligne

for counting points on varieties over finite fields one might try

to analyze the Salié moments in (6) via the variety (7). Howev-

er, the variety (7) is highly singular which makes this approach

problematic. Another approach to this problem via monodromy

of the ‘Kloosterman Sheaf’ was taken by Katz in [16]. He estab-

lished that as p → ∞ the moments B(k, p) converge to the mo-

ments B(k) of the so called ‘Sato-Tate’ measure. In other words he

shows that if the ‘Kloosterman angles’, θa,p ∈ [0, π ] are defined

by

2 cosθa,p =
S(a, 1, p)√

p
(15)

then their distribution, for 1 6 a 6 p − 1 converges to 2
π sin2 θdθ

as p → ∞. An interesting conjecture about Kloosterman sums

that has been confirmed with numerical experiments is that for a

fixed, say a = 1, the angles θ1,p are distributed according to the

above Sato-Tate measure, as p → ∞.

The general modular form connection

The story of the Kloosterman sum modular form connection does

not end with these developments in arithmetical algebraic geom-

etry. In fact there is a further powerful connection not only with

holomorphic modular forms but also with the most general mod-

ular forms including Maass forms (which are eigenforms of the

Laplacian on Γ\H). We note that the Kloosterman sum is to the

Bessel function as the Gauss sum is to the Gamma function, that

is to say it is the finite field analogue of the Bessel function. This

is transparent from comparing the definition (3) and the represen-

tation
K0(z) =

1

2

∫

∞

0
e−(t+z2/4t) dt

t
(16)
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for the Bessel function. As is well known, Bessel functions arise

in the context of the representations of SL(2, R). The global con-

nection has its roots in the trace like formula of Petersson [30]

which gives a relation between sums of Kloosterman sums and

sums of Fourier coefficients of modular forms over a basis of

such forms. In Selberg [33] an extension of this relation to Maass

forms is indicated. The precise identity in this case was given

by Kuznietzov [25] and Bruggeman [2] in their extension of Pe-

tersson’s formula. While algebraic geometry with its cohomolog-

ical interpretation of the Kloosterman sum allows for the analysis

of S(m, n, p) for a fixed prime p, the above modular form con-

nection allows one to study S(m, n, c) with c varying over inte-

gers. The Petersson-Kuznietzov-Bruggeman formula also gives a

direct connection between cancellations in sums of Kloosterman

sums and the Ramanujan Conjectures for Maass forms (including

the Selberg eigenvalue conjecture concerning the Laplace spec-

trum of L2(Γ\H) , [33]). Unlike the case of holomorphic forms

of even integral weight, these conjectures have not been proven,

though substantial progress has been achieved [28], [18]. This

general Kloosterman Sum to modular form connection has, pri-

marily through the work of Iwaniec and his coauthors Bombieri,

Deshoulliers, Duke and Friedlander, became a fundamental tool

in modern analytic number theory (see [15] for a survey of some

of this theory). The theory they have developed (which some

have termed ‘Kloostermania’) has many striking applications in-

cluding the one to Artin’s primitive root conjecture that Heath-

Brown mentioned.

An important conjecture concerning Kloosterman sums and

which has many applications, is that of Linnik [27] and Selberg

[33]. It asserts that for n, m, X > 1, ε > 0 and X > (m, n)1/2+ε,

∑
c 6X

S(m, n, c)√
c

6 BεX1/2+ε (17)

for Bε a constant depending only on ε. There are similar Conjec-

tures when c is restricted to arithmetic progressions. Note that

Weil’s bound (14) (which yields S(m, n, c) = Oε(c1/2+ε) for any

ε > 0) gives the bound of X1+ε in (17). One seeks cancellations

due to the signs of the Kloosterman sums. Kuznietzov [25] us-

ing his trace formula and the elementary fact that SL(2, Z)\H has

no exceptional Maass eigenvalues, established that for m, n > 1

fixed, there is A = A(m, n) s.t.

∑
c 6X

S(m, n, c)√
c

6 A X2/3(log X)1/3 . (18)

The recent developments [28], [18] towards the Selberg eigenval-

ue conjecture show that there is also cancellation for such sums

on progressions. For m, n, a, q fixed, there is A = A(m, n, a, q) s.t.

∑
c 6X

c≡a(q)

S(m, n, c)√
c

6 AX13/18 . (19)

Before leaving the topic of Kloosterman sums, I mention one other

recent result. Katz [17] noticing that the numbers a(p) = − S(1,1,p)√
p

behave very much like the coefficients at primes of a Hecke eigen-

form (that is they obey the Ramanujan bound |a(p)| 6 2 and ap-

parently also the Sato-Tate law) asked whether they might in fact

H.D. Kloosterman
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Kloosterman representing the Netherlands at a meeting of the IMU

be the coefficients of a cusp form. Such a form cannot be a holo-

morphic one since the numbers S(1, 1, p) do not lie in a fixed ex-

tension of Q. So perhaps a Maass form? Booker [1] has shown

that if such a form exists then either its Laplace eigenvalue or its

level (as far as belonging to a congruence subgroups) would have

to be at least 224. So there is no doubt (unfortunately) that such a

juicy connection between Kloosterman sums and modular forms

does not exist.

Representing integers in number fields

In 1929 Kloosterman returned to his investigations on Hilbert’s

11th problem. He addresses the problem for definite forms F over

a totally real number field K. The circle method was extended to

number fields by Siegel [34] who dealt with the question of repre-

sentation of integers as a sum of five squares (in this case of num-

ber fields — the torus method would be a better description of the

method). His work can be generalized to general quadratic forms

in five (or more) variables. Unfortunately the levelling process

of Kloosterman has resisted generalization to number fields. In

[22] and [23] Kloosterman developed the modular form approach

to the representation problem. He extends the theory of Eisen-

stein series and of theta functions to Hilbert modular forms and

he reduces the representation problem to estimation of the Fourier

coefficients of Hilbert modular forms (i.e. to bounds towards the

Ramanujan Conjectures for these forms). As mentioned above,

his levelling method does not extend easily to his setting, and

so Kloosterman was not able to establish the desired ‘non-trivial’

bounds on the Fourier coefficients and this is the form in which

he left the general problem, except for a further paper [24] in 1942

on the representations by inhomogeneous quadratic forms.

Since Kloosterman’s work, there have been a series of develop-

ments on the problem of representations of integers by forms F.

We review these briefly. Malyshev [29] extended Kloosterman’s

work to deal with the general (i.e. nondiagonal) form F in four

(or more) variables over the rationals. The solution of Hilbert’s

problem in four (or more) variables over a number field is due to

Kneser [26] (see also [12] and [3]). Using algebraic methods and,

in particular, the Hasse principle (which in turn gave the solution

of Hilbert’s 11th problem in the context of rational, rather than in-

tegral, representations) Kneser established the following local to

global principle: Given a positive definite form F over a totally re-

al field K, there is a constant CF (effectively depending on F) such

that if m is a positive integer with Norm(m) > CF, then F rep-

resents m primitively integrally (i.e. F(x) = m with x1 , x2 , x3 , x4

relatively prime — a technical condition which is needed in this

four variable case) if and only if F(x) represents m primitively in-

tegrally locally.

This leaves the cases of forms F in two or three variables. The

binary case is equivalent to factorization of integers in quadratic

extensions of K and as Hilbert already pointed out it can be an-

alyzed by class field theory for relative quadratic extensions. In

any event in this case, there is no local to global principle (in gen-

eral when various class numbers are not equal to one) even for m

large. So the situation for binary forms is very different to that of

forms in four or more variables.

The investigation for forms in three variables is much more

subtle and difficult and, in fact, is not completely understood.

Neither the circle method (even over Q with Kloosterman’s lev-

elling process) nor the algebraic methods have been successful

in this case. The approach through modular forms and theta

functions leads to analogues of the Ramanujan Conjectures for

3/2 weight forms. These have no known algebro-geometric in-

terpretations. In fact, using the relation of Waldspunger [37]

of the coefficients of such forms to the value at s = 1
2 of cor-

responding automorphic L-functions, these half integral weight

Ramanujan Conjectures turn out to be equivalent to versions of

the ‘Lindelöf Hypothesis’ for these L-functions. For the prob-

lem at hand one needs to obtain estimates for these 3/2 weight

Fourier coefficients, which are better than what the sharp esti-

mation of Kloosterman sums (to be precise in this case, these

sums are variants known as Salié sums) yields. Duke [6] us-

ing an ingeneous embedding (into congruence subgroups) and

positivity argument due to Iwaniec [14], was able to establish

such ‘non-trivial’ bounds for the Fourier coefficients a f (m) of 3/2

weight cusp forms f , when m is square free (all this being over

Q), (also see [8] for another proof of this which goes through

estimating L-functions at s = 1
2 ). This leads to the following

result (see [9]): Given a definite form F in three variables over

Z, there is a constant CF (ineffective) such that for m > CF and

square-free, the equation F(x) = m is solvable in Z iff it is solv-

able integrally locally. The square-free condition can be relaxed
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to m lying outside a given finite set of quadratic progressions (i.e.

numbers of the form t jν
2 , j = 1, . . . ℓ, ν ∈ Z) and in fact the local

to global principle may fail along such a quadratic progression.

The ineffectivity arises from the use of Siegel’s ineffective lower

bound for L(1, χd), see [35].

Extending these ideas as well as Kloosterman sum methods to

number fields runs into basic problems not the least of which is

caused by the units. In [4] an approach which directly uses the

Maass spectral theory (and avoids Kloosterman sums) for Hilbert

modular forms is developed and is used to establish nontrivial es-

timations of L-functions of Hilbert modular forms, at s = 1
2 . Us-

ing extensions of Waldpurger’s formulas to this setting, these esti-

mates translate to the desired nontrivial estimates for Fourier co-

efficients of Hilbert modular forms of half-integral weight. In par-

ticular one obtains the extension of the above result for quadratic

forms in three variables over Q to definite forms F in three vari-

ables over K. We have only discussed definite forms because in-

definite forms are easier to handle. The reason is that the general

Siegel Mass Formula [36] gives an exact formula for the represen-

tation of m by the genus of F in terms of the Hardy-Littlewood

densities in (2). In the case that the genus of F consists of a single

class as is essentially the case when F is indefinite, the Mass For-

mula solves the representation problem explicitly in terms of local

representability. Thus with the caveat of ineffectiveness, Hilbert’s

problem 11 is resolved.

My guess is that, if Kloosterman were alive today he would be

happy to see that much progress has been made on what he set

in motion, and he might well be even more delighted to see the

extent to which his ideas and inventions are still at the forefronts

of research. k
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