P. Beentjes

Universidad Autónoma de la Laguna, Torreón, México
pietbeentjes@hotmail.com

Recreational mathematics

An algorithm for the generation of perfect squared rectangles of arbitrary dimension

A perfect squared rectangle (PRS) is a rectangle composed of squares of all different sizes. Many examples are given in the literature, for example in [1], [2] and [3].

In the following, an algorithm will be presented for the construction of a new PSR, starting with an initial PSR.

Step 1. Take an existing PSR with sides a and b.
Step 2. If $a-b \neq 0 \bmod 3$ enlarge the PSR to dimensions $a:=3 a$ and $b:=3 b$, which means that all sides of the embedded squares are being multiplied by 3 as well.

Step 3. Construct a new PSR as follows, adding size squares p through u (see figure 1) with dimensions:

$$
\begin{aligned}
p & =(6 a+6 b) / 3, \\
q & =(7 a+5 b) / 3, \\
r & =(4 a+5 b) / 3, \\
s & =(4 a+2 b) / 3, \\
t & =(a+2 b) / 3, \\
u & =(5 a+4 b) / 3 .
\end{aligned}
$$

The new rectangle has dimensions $p+u=(11 a+10 b) / 3$ and $p+q=(13 a+11 b) / 3$.

The so generated figures is a PSR because:

1. Squares p through u have integer sides since all numerators in the expressions for these squares are triples.
2. The figure clearly is a rectangle as can be checked by summing the various horizontal and vertical dissections. Moreover, the new rectangle is not a square because $p+u \neq p+q$. As such, it can be used again for the generation of a larger PSR using the same method.
3. As is easily verified, squares p through u are all different and bigger than the squares contained within the initial PSR. In fact, we have the ordering:

$$
\begin{aligned}
& \text { if } b<a \text {, then } b<t<a<s<r<u<p<q, \\
& \text { if } b>a \text {, then } a<t<b<s<u<r<q<p .
\end{aligned}
$$

Remark. A different PSR is obtained whether starting with $b>a$ or $b<a$. The latter case gives a bigger PSR because so are sides $p+u$ and $p+q$.

Example. Take as initial PSR the well known PSR of dimensions $32 \cdot 33$, filled with squares of size $18,15,7,8,14,4,10,1$, 9 , where the dissection is from upper-left to lower-right in the ordering indicated. Because the sides are 32 and 33 , we have $a-b \neq 0 \bmod 3$. Following step 2 above, the starting dimensions are $a=3 \cdot 32$ and $b=3 \cdot 33$. The new PSQ consists of the original squares (multiplied by 3): 54, 45, 21, 24, 42, 12, 30, 3, 27 and squares:

$$
p=390, q=389, r=293, s=194, t=98, u=292
$$

leading to a PSR of dimensions $p+u=682$ and $p+q=779$.

References

1 A.J.W. Duijvestijn, A lowest order simple perfect 2×1 squared rectangle. Journal of Combin. Th. Ser. B 26, 372-374, 1979.

2 H. Reichert and H. Toepken, H. Jahresber. Deutsche Math. Verein. 50, 1940.

3 H. Steinhaus, Mathematical Snapshots, 3rd Ed. New York, Dover, 1999.

