Recreational mathematics

An algorithm for the generation of perfect squared rectangles of arbitrary dimension

A perfect squared rectangle (PRS) is a rectangle composed of squares of all different sizes. Many examples are given in the literature, for example in [1], [2] and [3].

In the following, an algorithm will be presented for the construction of a new PSR, starting with an initial PSR.

Step 1. Take an existing PSR with sides a and b.

Step 2. If $a - b \neq 0 \mod 3$ enlarge the PSR to dimensions $a := 3a$ and $b := 3b$, which means that all sides of the embedded squares are being multiplied by 3 as well.

Step 3. Construct a new PSR as follows, adding size squares p through u (see figure 1) with dimensions:

- \[p = (6a + 6b)/3, \]
- \[q = (7a + 5b)/3, \]
- \[r = (4a + 5b)/3, \]
- \[s = (4a + 2b)/3, \]
- \[t = (a + 2b)/3, \]
- \[u = (5a + 4b)/3. \]

The new rectangle has dimensions $p + u = (11a + 10b)/3$ and $p + q = (13a + 11b)/3$.

The so generated figures is a PSR because:
1. Squares p through u have integer sides since all numerators in the expressions for these squares are triples.
2. The figure clearly is a rectangle as can be checked by summing the various horizontal and vertical dissections. Moreover, the new rectangle is not a square because $p + u \neq p + q$. As such, it can be used again for the generation of a larger PSR using the same method.
3. As is easily verified, squares p through u are all different and bigger than the squares contained within the initial PSR. In fact, we have the ordering:

- \[\text{if } b < a, \text{ then } b < t < a < s < r < u < p < q, \]
- \[\text{if } b > a, \text{ then } a < t < b < s < u < r < q < p. \]

Remark. A different PSR is obtained whether starting with $b > a$ or $b < a$. The latter case gives a bigger PSR because so are sides $p + u$ and $p + q$.

Example. Take as initial PSR the well known PSR of dimensions $32 \cdot 33$, filled with squares of size 18, 15, 7, 8, 14, 4, 10, 1, 9, where the dissection is from upper-left to lower-right in the ordering indicated. Because the sides are 32 and 33, we have $a - b \neq 0 \mod 3$. Following step 2 above, the starting dimensions are $a = 3 \cdot 32$ and $b = 3 \cdot 33$. The new PSQ consists of the original squares (multiplied by 3): 54, 45, 21, 24, 42, 12, 30, 3, 27 and squares:

- \[p = 390, \]
- \[q = 389, \]
- \[r = 293, \]
- \[s = 194, \]
- \[t = 98, \]
- \[u = 292, \]

leading to a PSR of dimensions $p + u = 682$ and $p + q = 779$.

![Figure 1](image-url)

References