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The Smarandache
harmonic series

For every positive integer n let S(1n) be the minimal positive in-
teger m such that n | m!  This function is known as the Smaran-
dache function. We begin with a couple of considerations con-
cerning the function S. First of all, let us notice that if n is a
squarefree number, say n = q142...qt, where 2 < g1 < ... < ¢
are prime numbers, then S(1) = g;. Secondly, let us notice that
lim, .00 S(1) = oo. Indeed, this equality follows right-away by
noticing that if k is a positive integer and # is a positive integer
such that S(n) < k, thenn < k!

In this note, we analyze convergence questions for some series
of the form >® 1
Sy’ )

or close variations of it.

Divergent Series
In this section, we point out that

Theorem 1. Forany & < 1, the series
x® 1

n; () oB " v
diverges.

Theorem 1 has the obvious

Corollary 1. Let 6 > 0. Then, series (1) diverges. Moreover, the series
Z s(n)(loglogn)5 ®)

n=1
diverges as well.
Proof of theorem 1. Foranyt > 1let p; < py < ... < p; be the first

t primes. By the remarks made in the Introduction, we know that
any number of the form n = p;m where m is squarefree whose

prime factors are among the numbers py, ..., p;—1 will obviously
satisfy S(n) = p;. Since there are exactly 2/~! such numbers (that
is, the powerset of {p1, p2, ..., ps—1}) and since each one of them
is smaller than pf, it follows that series (2) is bounded from below
by the subseries

21‘71

[ t=1-(tlog(p:))* log, pr
t;l pgtlog(pt))é t212 2P, (4)

Since by the prime number theorem

. pt
tlgrgo tlogt L ©®)

and 6 < 1, it follows immediately that
t—1-— (tlog(pt))510g2 pr >0

for t large enough. In particular, the general term of (4) is un-
bounded, which certainly implies that (4) is divergent. O

One can use Dirichlet’s theorem on the of size of the t-th prime
in an arithmetical progression (see page 247 in [1]) to show that
the series (1)-(3) remain divergent if instead of summing over all
the positive integers one sums only over all the terms of a fixed
arithmetical progression (ak + b)>1.

Convergent Series
In this section, we mention some convergent series involving the
function S.

Theorem 2. The series
x® 1

2, 5y ©

n=

converges for all 5 > 1 and diverges for all 5 < 1.
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Theorem 3. For any € > 0 the series

x 1
nzl S(n)elogn

converges.
It is unclear to us how Theorem 2 relates to Theorem 3.

Proof of theorem 2. We treat the case 6 < 1 first. Here, the argu-
ments employed in the proof of Theorem 1 show that series (6) is
bounded below by

ztfl

t—1-p21
= = 2 Py 108, pf. (7)
=1 plt &

Since 6 < 1 it follows, by the limit (5), that t — 1 — pf log, pt > 0
for t large enough, which rules out the convergence of (7).

We now assume that 6 = 1. We show something stronger, namely
that 1

&1 5(n)es0 ®

converges for all € > 0. It certainly suffices to assume that e < 1.
Series (8) can be rewritten as

2,
where u(k) = #{n | S(n) = k}. Since every n such that S(n) = k
is a divisor of k!, it follows that

u(k) < d(k).

u(k)
kek

By formula (1) on page 111 of [1], we know that d(I) < CI€ for any
positive integer I, where C is some constant (depending on ¢).

Hence, u(k) < d(k!) < C(k!)€ < Cq(k/2)k ©)

for some constant C; (the last inequality in (9) follows from Stir-
ling’s formula). From (9), it follows that series (8) is bounded
above by

1 .<k>ek _q z %:rcil-

Proof of theorem 3. We make the argument first in the case € = 1
and then we explain how the argument can be adapted to the gen-
eral case.

We begin by excluding the even numbers. Every even number
is either a power of 2, or it is divisible by an odd number > 1.
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Let us first account for the contributions of the powers of 2. When
n = 2B, it follows easily that S(n) > f3. Hence, these contributions
are bounded above by

1
2 glog?

p=1

which is obviously convergent. Assume now that n = 2fm for
some m > 1. Since S(n) > S(m), it follows that the contributions
of all the numbers of the form 2Pm for some B > 1 are bounded
above by

1 . 1 1
ﬁél S(m)(logm+/310g2) - S(m)logm ﬁél S(m)ﬁlogZ
1 1
= < ,
S(m)logm S(m)logz -1~ S(m)logm
where C = 310317271. Hence, it suffices to look at the series
S <o (10)
m odd S(m)logm .

It is clear that for any integer m, S(m) is divisible with at least
one of the primes p dividing m. Fix such a prime p and look at
all the possible integers m whose S is a multiple of p. Clearly,
S(m) > p and m = pu for some integer u. Let us count the u's
now. For every s > 0, there are at most 1 — ¢° + 1 integers u in
the interval [¢°, eS‘H) and each one of them will satisfy logu > s.
Hence, for p fixed, the contributions of all those m’s is at most

STl —es 41 1 STl e 1 C

< — . < ,
%o plog p+s plogp % p* plogp 1— g/p plogp
(11)
where C = ﬁ Hence, series (10) is bounded above by
1
¢ logp
p prime P

which is obviously convergent.

Suppose now that € < 1 is arbitrary. Then one applies the pro-
cedure outlined at the beginning of the argument and eliminates,
one by one, all primes p such that p¢ < e. Once this has been
achieved, then one can apply the argument explained above in
the case m odd. Indeed, the reason why this argument worked is
because series (11) is geometric with ratio e/ p smaller than 1 (no-
tice that (11) wouldn’t have worked out for p = 2 because 2 < ¢).
At the end, one obtains just the series
1

z elogp

p prime p
which is obviously convergent. O



