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How to spot

Most optimization problems with continuous variables do not allow

analytical solutions and have to be solved numerically. But the re-

maining small minority contains a great many gems of considerable

interest. Among these are for example problems of finding opti-

mal numerical methods to solve optimization problems. The core

of their analysis is the development of methods for isolating the

optima. Here mathematical rigour is not essential: the verification

that a candidate-optimum is a true optimum is usually not difficult.

Therefore the name of the game is how to spot the candidate optima.

In this paper we give an intuitive introduction to the main ideas

underlying these methods and present a number of applications

of their use. This account leads up to the well-known analytical

unification of these methods by Tikhomirov. This unification is

in the spirit of Lagrange’s celebrated multiplier rule. Finally we

outline a new, geometric unification which is in the spirit of Fer-

mat’s method for spotting optima: put the derivative equal to ze-

ro. This unification is simpler and there is reason for hope that it

can be used to solve new types of problems. From the unification

in the style of Fermat one can derive the unification in the style of

Lagrange, and so in particular Pontrijagin’s Maximum Principle

from Optimal Control.

Weierstrass’ theorem

The existence of solutions of optimization problems is taken care

of by the theorem of Weierstrass. One variant of this result is that a

continuous function f : R
n → R which is coercive (⇔ f (x) → ∞

if ‖x‖2 → ∞) has a minimum. In the applications we will make

repeated use of the theorem of Weierstrass. Let us give a first

application.

Fundamental theorem of algebra. A polynomial p(z) of degree n ≥ 1

with complex coefficients has a complex root.

Proof. For each complex number z0 which is not a root of p(z)

we can write the polynomial q(z) = p(z0 + z) as q(z) = a0 +

akzk + · · · + anzn with k ≥ 1 and a0ak 6= 0. Then — writing

β = arg(ā0ak) and using that |w|2 = ww̄ for all complex num-

bers w — one has for t ∈ (0, ∞) and θ ∈ R that |q(teiθ)|2 equals

|a0|
2 + 2|a0||ak|t

k cos(kθ +β)+ O(tk+1) (for t ↓ 0). It follows from

this expression that |q(z)| is not minimal in z = 0, because it is

possible to choose θ such that cos(kθ + β) < 0. As z0 is an ar-

bitrary complex number with p(z0) 6= 0, this proves that if the

function |p(z)| has a minimum, then it must be in a root of p(z).

Well, |p(z)| has certainly a minimum; this follows from Weier-

strass’ theorem as it is a continuous, coercive function on C ≃ R
2

(write z = x + iy). �

Fermat’s theorem

The most popular method to spot candidate solutions ’put the

derivative equal to zero’ was first mentioned by Kepler in his

book on the art of making wine barrels [1]. The first proof — for

polynomial functions of one variable — was given by Fermat.
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an optimum

The ideal of this method is achieved for a differentiable strictly

convex coercive function f of one variable, as in figure 1. We will

call minimizing such a function an ‘ideal’ problem. Then f has

precisely one minimum, the unique root of f ′(x) = 0.

The method of Fermat and also the concept ‘ideal problem’ can

be generalized easily to functions of several variables and even to

functions on normed vectorspaces.

Figure 1 An ideal problem for the method of Fermat

Do three lines in space have a unique waist?

Many years ago dr. John Tyrrell challenged the PhD students of

King’s College London with the following puzzle.

Show that three lines in space in sufficiently general position

have a unique waist. This can be visualized as follows. An elastic

band is stretched around three lines of iron wire in space which

have a fixed position. By elasticity it will slip to a position where

its total circumference is minimal. The challenge is to show that

this final position does not depend on the initial position of the

elastic band; it depends only on the position of the three lines of

iron wire. A precise formalization of the problem is suggested

by figure 2: let l1 , l2 and l3 be three lines in three-dimensional

space, pairwise disjoint and not all mutually parallel. Consider

the following minimization problem, where ‖ · ‖2 is the euclidean

norm:

(P) = (Pl1 ,l2 ,l3
)

f (p1 , p2 , p3) = ‖p1 − p2‖2+‖p2 − p3‖2+‖p3 − p1‖2 → min

subject to pi ∈ li (i = 1, 2, 3).

The problem is to show that (P) has a unique solution.

Dr. Tyrrell told us that to the best of his knowledge the solution

of this simple-looking problem was not known. The words of

John carried great weight: he was an expert in all sorts of puzzles.

We tried to solve it, for example by eliminating the constraints,

applying Fermat’s theorem and carrying out all sorts of algebraic

manipulations on the resulting equations. Nothing worked.

Recently I came again across the problem. This time it offered

no resistance: the following elementary insight into optimiza-

tion problems allows a straightforward solution of this puzzle.

A successful analysis usually depends on the exploitation of the

smoothness and (strict) convexity of the data of the problem at

hand. Here the objective function f turns out to be differentiable,

strictly convex and coercive on the affine space of feasible triplets

(p1 , p2 , p3). Therefore the problem has a unique solution and this

is characterized by ‘the derivative of f is equal to zero’. That is,

we have again an ‘ideal problem’, in the sense given above. Let us
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Figure 2 An elastic band stretched around three wires of iron

verify this. It is obvious that f is differentiable and coercive on the

affine space of feasible triplets (p1 , p2 , p3). It remains to check the

strict convexity. To do this we use that the euclidean norm ‖ · ‖2 is

a convex function and that its restriction to each line not through

the origin is strictly convex. This follows for example from the

observation that the graph of ‖ · ‖2 is the ‘icecream cone’, which

is shown in figure 3.

Figure 3 The euclidean norm is ’almost’ strictly convex

To prove the strict convexity of f it suffices to take an arbitrary

line m in the affine space of feasible triplets (p1 , p2 , p3) and to

prove that the restriction of f to m is strictly convex. Now f is

defined as the sum of three terms, so it suffices to prove that each

of them is convex and that at least one of them is strictly con-

vex. The convexity of these three terms, as functions of a feasi-

ble triplet (p1 , p2 , p3) follows immediately from the convexity of

the euclidean norm ‖ · ‖2. Now we take a parametric description

(p1(t), p2(t), p3(t)) of the line m where the pi(t) (i = 1, 2, 3) are

affine functions of one real variable t. Then not all of the three

difference functions p1(t) − p2(t), p2(t) − p3(t), p3(t) − p1(t)

can be constant, as the lines l1 , l2 , l3 are not all mutually parallel.

Without restricting the generality of the argument we assume that

p1(t) − p2(t) is not constant. Then p1(t) − p2(t) is a parametric

description of a line in R
3 not through the origin — as l1 and l2

have no common points. Therefore ‖p1(t) − p2(t)‖2 is a strictly

convex function of t, as desired.

It is possible to give a simple geometric description of the condi-

tion that ‘the derivative of f is equal to zero’. Consider three lines

l1 , l2 , l3 in three-dimensional space satisfying the two assump-

tions above and let p1 , p2 , p3 be three distinct points in three-

dimensional space. Let b be the intersection of the bisectrices of

the triangle with vertices p1 , p2 , p3. Then the triplet (p1 , p2 , p3)

is the — unique — solution of the problem (Pl1 ,l2 ,l3
) precisely if

pi is the orthogonal projection of the point b on the line li (for

i = 1, 2, 3).

Finally let us discuss the two assumptions on the lines l1 , l2 , l3
which we have made. The second assumption is made out of ne-

cessity: three parallel lines have clearly no unique waist. The first

one is made for the sake of convenience: otherwise f is not differ-

entiable everywhere. However the method above can be pushed

to show that without this assumption one has also uniqueness in

all cases except the following one: two of the lines l1 , l2 , l3 are

parallel and the third one intersects both of them.

Interior point methods

In 1984 when Karmarkar published his epoch-making paper [2],

interior point methods for solving linear programming (LP) prob-

lems seemed rather mysterious. Now the basic idea can be ex-

plained in a relatively straightforward way. For the intricacies of

the method and its implementations we refer for example to [3].

For each linear subspace P̃ of R
n and each vector s in R

n we let

P = P̃ + s and D = D̃ + s, where D̃ is the orthogonal complement

of P̃. We consider the problem:

(Q)
find two nonnegative vectors p ∈ P

and d ∈ D which are orthogonal.

For practical purposes it usually suffices to find for a given ε > 0

an ε-solution of (Q), that is two non-negative vectors p ∈ P and

d ∈ D with inner product 〈p, d〉 smaller than ε.

As a first illustration let n = 2 and let P and D be two orthog-

onal lines in the plane R
2 as in figure 4. Assume that both lines

contain positive vectors and do not contain the origin. Then the

problem (Q) has a unique solution ( p̂, d̂): one glance at the pic-

ture suffices to spot it.

The next case is already slightly more interesting: take n = 3,

choose P to be a line in R
3 and D a plane in R

3 orthogonal to

the line P. Then the problem (Q) asks to find a point p in P and

a point d in D, both in the first orthant such that the vectors p

and d are orthogonal. Now we are going to give a geometrical

Figure 4 The LCP-problem: primal and dual LP-problems in one picture
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Figure 5 The LCP-problem: primal and dual LP-problems in one picture (in space)

description of the unique solution of this problem in the following

special case. The line P intersects the x1-x2-plane (respectively

the x2-x3-plane) in a point p̂1 (respectively p̂2) which lies in the

interior of the first quadrant of this plane, as is shown in figure 5.

Moreover we assume that the point d̂ of intersection of D with

the union of the positive x1-axis and the positive x3-axis is not

equal to the origin. Then the problem (Q) has a unique solution.

It is ( p̂2 , d̂) if d̂ lies on the x1-axis: then p̂2 and d̂ are orthogonal. It

is ( p̂1 , d̂) if d̂ lies on the x3-axis: then p̂1 and d̂ are orthogonal.

If n is large then the combinatorics of the situation is sufficient-

ly rich to make the problem (Q) really interesting. A problem (Q)

is called a linear complementarity problem (LCP). This terminology

is motivated by the observation that the orthogonality condition

for two nonnegative vectors p and d is equivalent to the comple-

mentarity conditions pidi = 0 (∀i). Now we will relate the prob-

lem (Q) to the following pair of primal-dual LP-problems

(P) f (p) = 〈s, p〉 → min subject to p ∈ P and p ≥ 0,

(D) g(d) = 〈s, s − d〉 → max subject to d ∈ D and d ≥ 0.

Let ε > 0 be given. We call a feasible vector p for (P) an ε-solution

of (P) if f (p)−value(P) < ε where value(P) is defined to be the

infimum of all values taken by f on feasible vectors for (P). In a

similar way one defines the concept ε-solution for the maximiza-

tion problem (D). The promised relation of (Q) with (P) and (D)

is as follows: if ( p̂, d̂) is an ε-solution of (Q) then p̂ is an ε-solution

of (P) and d̂ is an ε-solution of (D).

Let us verify this. Let ( p̂, d̂) be an ε-solution of (Q). Take ar-

bitrary feasible vectors p of (P) and d of (D). Then the difference

vector p− s (respectively d− s) lies in P̃ (respectively in D̃). There-

fore 〈p − s, d − s〉 = 0. Rewriting this gives 〈s, p〉 − 〈s, s − d〉 =

〈p, d〉. This is ≥ 0 and moreover it is < ε if p = p̂ and d = d̂. As p

(respectively d) is an arbitrary feasible vector of the minimization

problem (P) (respectively the maximization problem (D)), this

implies that p̂ is an ε-solution of (P) and that d̂ is an ε-solution

of (D).

Now we turn to the problem of finding an ε-solution of the LCP-

problem (Q) and so of the primal-dual pair of LP-problems (P)

and (D). To this end we introduce an auxiliary problem (Qx) for

each positive vector x ∈ R
n. To define this and for other pur-

poses we introduce a notation for the extension of operations on

numbers to pointwise operations on vectors:

v · w = (v1w1 , . . . , vnwn) ∀v, w ∈ R
n (‘the Hadamard product’),

ln v = (ln v1 , . . . , ln vn) for all positive vectors v ∈ R
n ,

vr = (vr
1 , . . . , vr

n) for all positive vectors v ∈ R
n and all r ∈ R.

These notations allow a convenient way of defining (Qx):

(Qx) hx(p, d) = 〈p, d〉 − x · ln(p · d) → min

subject to p ∈ P, p > 0, d ∈ D, d > 0.

This is again an ‘ideal problem’, provided that feasible pairs (p, d)

exist. Indeed one can readily check that the objective function of

(Qx) is a differentiable, strictly convex, coercive function. There-

fore (Qx) has a unique solution, say (p(x), d(x)) and this solution

can be characterized by the condition ‘the derivative of the objec-

tive function of (Qx) is zero’. The explicit form of this condition

is p · d = x.

Let us verify this. For each positive x ∈ R
n the gradient of the

function 〈p, d〉 − x · ln(p · d), where now we let p and d run over

the entire space R
n, is the vector (d − x · p−1 , p − x · d−1) as one

readily checks by partial differentiation with respect to the vari-

ables p1 , . . . , pn , d1 , . . . , dn and by using the shortened notation

introduced above. Therefore, taking into account the constraints

p ∈ P and d ∈ D in (Qx) it follows that the theorem of Fermat

gives the following conditions for optimality:

〈d − x · p−1 , p̃〉 = 0 ∀ p̃ ∈ P̃,

〈p − x · d−1 , d̃〉 = 0 ∀d̃ ∈ D̃.

These conditions can be rewritten as

〈p
1
2 · d

1
2 − x · p−

1
2 · d−

1
2 , p−

1
2 · d

1
2 · p̃〉 = 0 ∀ p̃ ∈ P̃,

〈p
1
2 · d

1
2 − x · p−

1
2 · d−

1
2 , p

1
2 · d−

1
2 · d̃〉 = 0 ∀d̃ ∈ D̃.

Now p−
1
2 · d

1
2 · P̃ and p

1
2 · d−

1
2 · D̃ are orthogonal complements

as P̃ and D̃ are orthogonal complements. Therefore the condi-

tions above are equivalent to p
1
2 · d

1
2 − x · p−

1
2 · d−

1
2 = 0. That is,

p · d = x.

The following reformulation of our results about the problems

(Qx) is suggestive for our present purpose of finding anε-solution

of (Q). The Hadamard product establishes a bijection between the

set of strictly feasible pairs (p, d) of (Q) — that is p ∈ P, p > 0,

d ∈ D, d > 0 — and the set of positive vectors x in R
n: we let (p, d)

and x correspond precisely if x = p · d. Then we write p = p(x)

and d = d(x). In figure 6 this bijection is illustrated for n = 2.

If we view the lines P and D in R
2 as coordinate-axes, then the

pairs of positive vectors (p, d) with p ∈ P and d ∈ D form a re-

gion in the ‘P-D-plane’. The Hadamard product maps this region

bijectively to the strictly positive first quadrant of R
2.

It is easy to calculate this bijection in one direction: to (p, d)

one associates the Hadamard product p · d. If only the inverse

would be as easy to calculate, we could find an ε-solution of (Q)

by choosing a positive vector x with ‖x‖1 < ε and calculating

(p(x), d(x)); this is an ε-solution of Q as 〈p(x), d(x)〉 = ‖x‖1. This

follows by summing the relations pi(x)di(x) = xi for i = 1, . . . , n.

As it is, all we can do in this direction is the following: if we have

for some positive vector x ∈ R
n a good approximation (px , dx)

of (p(x), d(x)) then we can easily determine a good approxima-

tion (py , dy) of (p(y), d(y)) for any given positive vector y which

is not ‘too far away’ from x. This can be done as follows. Apply
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Figure 6 The primal-dual strictly feasible region transformed into the first strict
quadrant

one step of the Newton-Raphson algorithm with starting point

(px , dx) to the system 



p ∈ P,

d ∈ D,

p · d = y.

As x and y are not too far away, (p(x), d(x)) and (p(y), d(y)) are

not too far away and so (px , dx) is not too far away from the

unique solution (p(y), d(y)) of the system. Therefore the result

of this step will be a good approximation of (p(y), d(y)).

Now suppose that we are so lucky to be in possession of a

strictly feasible pair ( p̄, d̄) of (Q). Then we calculate x̄ = p̄ · d̄

and view ( p̄, d̄) as a good approximation of (p(x̄), d(x̄)): in fact

( p̄, d̄) = (p(x̄), d(x̄)). Then one can also calculate a good approxi-

mation of (p(x), d(x)) for any positive vector x: by repeated use of

the procedure above, moving gradually from x̄ to x. If x is chosen

such that ‖x‖1 <
1
2ε then the result of this is an ε-solution for (Q).

Now the efficiency question arises: how to find strategies to move

from x̄ to such a vector x in as few steps as possible? It would car-

ry us too far to include a full discussion of this question. Figure 7

contains the idea of a strategy which is very efficient both in theo-

ry and in practice. Assume that x̄ = p̄ · d̄ lies on the 45o-line. Then

we can try to move gradually from x̄ to a small positive vector x

on the 45o-line by following closely this 45o-line. This line can be

parametrized by tx̄ where t runs from 1 to almost 0. Then the ap-

proximations (p, d) follow closely the path (p(tx̄), d(tx̄)) where t

runs from 1 to almost 0. This path is usually called the central path.

Figure 7 The royal road to the solution: the central path

The computergame Schiet Op [4] allows one to do some sim-

ple experiments with this algorithmic idea for ‘toy-problems’ (the

case n = 2). For a state of the art implementation of interior point

methods (also for many nonlinear programming problems) we re-

fer to Sedumi [5].

Lagrange’s theorem

Lagrange discovered a general method to deal with problems

having equality constraints. Let us recall the formulation of La-

grange of his multiplier rule (in [6]).

“One can state the following general principle. If one is looking for the

maximum or minimum of some function of many variables subject to the

condition that these variables are related by a constraint given by one or

more equations, then one should add to the function whose extremum is

sought the functions that yield the constraint equations each multiplied

by undetermined multipliers and seek the maximum or minimum of the

resulting sum as if the variables were independent. The resulting equa-

tions, combined with the constraint equations, will serve to determine

all unknowns.”

The only essential addition one would like to make to this sen-

tence nowadays is that one should also introduce a multiplier for

the objective function. Lagrange’s theorem can be derived from

Fermat’s theorem by using the implicit function theorem. There-

fore it does not offer anything essentially new. However for prac-

tical purposes it is very handy as the following application shows.

Each symmetric matrix has an orthonormal basis of eigenvectors

Let A be a symmetric n × n-matrix. The problem to maximize

xT Ax subject to xT x = 1 has a solution f1 by the theorem of Weier-

strass. From the Lagrange multiplier rule it follows immediately

that A f1 = λ1 f1 for some number λ1. The problem to maximize

xT Ax subject to xT x = 1 and f T
1 x = 0 has a solution f2 by the

theorem of Weierstrass. From the Lagrange multiplier rule one

readily finds that A f2 = λ2 f2 for some number λ2 and so on. As

a result we obtain an orthonormal basis { fi}
n
i=1 of eigenvectors

of A.

Inequalities

Lagrange’s multiplier rule can be used to prove all inequalities

in a finite number of real variables from [7] by one and the same

straightforward method. Let us illustrate this with a simple ex-

ample.

Cauchy-Schwarz. One has

x1 y1 + · · · + xn yn ≤ (x2
1 + · · · + x2

n)
1
2 (y2

1 + · · · + y2
n)

1
2 ,

and equality holds precisely if the vectors (x1 . . . xn) and (y1 . . . yn) are

linearly dependent.

Proof. By homogeneity it suffices to prove that the problem to

maximize xT y subject to x, y ∈ R
n, xT x = yT y = 1 has as solu-

tions precisely all feasible vectors (x, y) with y = x. By Weier-

strass’ theorem this problem has a solution. Lagrange’s multi-

plier rule gives that for each solution (x̂, ŷ) there exist numbers

λ0 , λ1 , λ2, not all zero, such that (x̂, ŷ) is a stationary point of the
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Lagrange function L(x, y) = λ0xT y + λ1(xT x − 1) + λ2(yT y − 1).

That is,
0 = Lx(x̂, ŷ) = λ0 ŷ + 2λ1 x̂ and

0 = Ly(x̂, ŷ) = λ0 x̂ + 2λ2 ŷ.

So x̂ and ŷ are linearly dependent. Using the feasibility of (x̂, ŷ)

we get ŷ = ±x̂. The maximality of (x̂, ŷ) gives that ŷ = x̂. �

We recall that the usual proof of Cauchy-Schwarz is based on a

little trick.

The theorem of Karush-Kuhn-Tucker

For problems with inequality constraints such as the problem to

minimize f (x1 , x2) subject to g(x1 , x2) ≤ 0, where f and g are

differentiable, all solutions (x̂1 , x̂2) satisfy the so called Karush-

Kuhn-Tucker (KKT) conditions. For this problem one gets that

there exist numbers λ0 , λ1, not both zero, such that

1. x̂ is stationary for the Lagrange

function L(x) = λ0 f (x) + λ1g(x),

2. λ0 , λ1 ≥ 0,

3. λ1g(x̂) = 0.

Moreover if f and g are convex functions and λ0 > 0, then these

conditions are not only necessary but also sufficient for optimality

of x̂. The KKT-conditions for this problem can be derived from

the Lagrange multiplier rule. For this one should distinguish two

cases:

1. The constraint is binding: g(x̂) = 0. Then the KKT-conditions

follow immediately from the Lagrange multiplier rule for the

problem f (x) → min subject to g(x) = 0.

2. The constraint is not binding: g(x̂) < 0. Then the KKT-

conditions follow immediately from Fermat’s theorem for the

problem f (x) → min subject to g(x) < 0.

Therefore the KKT-conditions do not offer anything essentially

new. However it is convenient to use them.

Having seen this special case, one can easily guess the correct

form of the KKT-conditions for minimizing functions of several

variables with a finite number of equality and inequality con-

straints and derive them from the Lagrange multiplier rule and

Fermat’s theorem.

Zero-sum games

Many games between two persons can be modeled as follows.

Let M be an m × n-matrix. Person 1 can choose between m moves

and simultaneously person 2 can choose between n moves. If per-

son 1 chooses i and person 2 chooses j then person 1 has to pay

mi j euro to person 2. If mi j is negative, then this has the natural

interpretation: person 2 has to pay −mi j = |mi j| euro to person 1.

The game is to be played repeatedly. The question is what is the

best strategy for each player? ‘Best’ means here highest guaran-

teed expected payoff. We allow the following type of strategy.

A strategy for player 1 can be described by a vector p in the set

P = {p ∈ R
m | p ≥ 0 and ∑m

i=1 pi = 1}. The meaning of this is

that person 1 chooses move i with chance pi for all i. Similarly

a strategy for player 2 can be described by a vector q in the set

Q = {q ∈ R
n | q ≥ 0 and ∑n

j=1 q j = 1}. Then the expected payoff

is pT Mq.

By using the KKT-conditions for LP-problems one can derive

the following theorem of von Neumann. There exists a Nash-

equilibrium, that is, p̂ ∈ P and q̂ ∈ Q such that pT Mq̂ ≤ p̂T Mq̂ ≤

p̂T Mq for all p ∈ P and q ∈ Q. That is, if person 1 chooses p̂

and person 2 chooses q̂, then neither of them is tempted to choose

another strategy.

Euler’s equation and a transversality condition

There are many interesting optimization problems where the vari-

able x which has to be chosen optimally is not a quantity x ∈ R

or a finite number of quantities x ∈ R
n but a continuously differ-

entiable function x(t) of one variable t on an interval [t0 , t1], that

is x(·) ∈ C1[t0 , t1]. Many of these problems can be modeled as

follows: minimize

J(x(·)) =
∫ t1

t0

f (t, x(t), ẋ(t))dt

where x(·) runs over C1[t0 , t1]. Here t0 , t1 ∈ R with t0 < t1,

the function f on R
3 is continuous and ẋ(t) is the derivative of

the function x(t). Euler discovered that f̂x − d
dt f̂ ẋ = 0 (Euler’s

equation) and f̂ ẋ(t0) = f̂ ẋ(t1) = 0 (transversality conditions) for all

solutions x̂(·) of this problem. In a more precise notation the Euler

equation is

∂ f

∂x
(t, x̂(t), ˙̂x(t)) −

d

dt
[
∂ f

∂ẋ
(t, x̂(t), ˙̂x(t))] = 0 ∀t ∈ [t0 , t1]

and the transversality conditions are

∂ f

∂ẋ
(t0 , x̂(t0), ˙̂x(t0)) =

∂ f

∂ẋ
(t1 , x̂(t1), ˙̂x(t1)) = 0.

At first sight this looks like a completely new method. However

we shall now make plausible that it is just Fermat’s theorem; it is

routine to turn this plausibility argument into an exact proof.

The derivative J′(x̂(·)) of J in x̂(·) is defined to be the linear func-

tion on C1[t0 , t1] for which, loosely speaking,

J(x̂ + h) − J(x̂) ≈ J′(x̂)(h)

for all h ∈ C1[t0 , t1] for which |h(t)| and |ḣ(t)| are sufficiently

small for all t ∈ [t0 , t1]. To be more precise,

J(x̂ + h) = J(x̂) + J′(x̂)(h) + o(h), h → 0

in the normed vectorspace C1[t0 , t1] with norm defined by

‖ f ‖C1 = max(supt∈[t0 ,t1 ]
| f (t)|, supt∈[t0 ,t1 ]

| ḟ (t)|).

Now we will ‘derive’ the following explicit formula for J′(x̂):

J′(x̂)(h) =
∫ t1

t0

( f̂x −
d

dt
f̂ ẋ)hdt +[ f̂ ẋh]t1

t0
for all h ∈ C1[t0 , t1]. (∗)

The difference J(x̂ + h) − J(x̂) equals by definition

∫ t1

t0

[ f (t, x̂ + h, ˙̂x + ḣ) − f (t, x̂, ˙̂x)]dt.
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If ‖h‖C1 is sufficiently small this is ‘after linearization of the in-

tegrand’ ≈
∫ t1

t0
[ f̂xh + f̂ ẋ ḣ]dt. By partial integration this can be

rewritten as ∫ t1

t0

( f̂x −
d

dt
f̂ ẋ)hdt + [ f̂ ẋh]t1

t0
.

Now we observe that this expression is linear in h. This finishes

the ‘derivation’ of (∗). Thus prepared we show that the result of

Euler is essentially Fermat’s theorem, that is, it is equivalent to

J′(x̂) = 0.

Well, the explicit formula (∗) for J′(x̂) makes it possible to de-

code the condition J′(x̂) = 0. As the function h ∈ C1[t0 , t1] in (∗)

is arbitrary, it ‘follows’ that f̂x −
d
dt f̂ ẋ = 0 and f̂ ẋ(t0) = f̂ ẋ(t1) = 0.

Finally we give a variant of the result of this section. If we

add the equality constraints x(t0) = x0 and x(t1) = x1 to the

problem, then each solution x̂(·) satisfies only the Euler equation

and not necessarily the transversality conditions. This result can

be derived from the result above in the same way as the Lagrange

multiplier rule can be derived from Fermat’s theorem.

Growth theory and Ramsey’s model

How much should a nation save? Two possible answers are: noth-

ing (“Après nous le déluge”, Louis XV) and everything (“Yes, they

live on rations, they deny themselves everything. . . But with this

gold new factories will be built . . . a guarantee for future plenti-

fulness” from the novel ‘Children of the Arbat’ of A. Rybakov [8]

(p. 34), illustrating the policy of Stalin). A third answer is given

by Ramsey’s model: choose the golden middle road; save some-

thing, but consume (enjoy) something as well. Ramsey’s paper

[9] on the optimal social saving behaviour is among the very first

applications of the calculus of variations to economics. This pa-

per has exerted an enormous if delayed influence on the current

literature on optimal economic growth. A simple version of this

model is the following optimization problem.

I(C(·), k(·)) =
∫

∞

0
U(C)e−θtdt → max

subject to k̇ = F(k) − C.

Here

C = C(t) = the rate of consumption at time t,

U(C) = the utility of consumption C,

θ = the discount rate,

k = k(t) = the capital stock at time t,

F(k) = the rate of production when the capital stock is k.

It is usual to assume U(C) = C1−ρ

1−ρ for some ρ ∈ (0, 1) and

F(k) = Ak
1
2 for some positive constant A. Then the solution of the

problem cannot be given explicitly; however a qualitative analy-

sis shows that it is optimal to let consumption grow asymptoti-

cally to some finite level. Now let us consider a modern variant

of this model from [10] and [11]. The intuition behind the model

above allows one to model the production function as F(k) = Ak

for some positive constant A instead of F(k) = Ak
1
2 . Now we ap-

ply Euler’s result to this problem. To this end we eliminate C; the

result is the problem

J(k(·)) =
∫

∞

0
−

(Ak − k̇)1−ρ

1 − ρ
e−θtdt → min .

Let k̂(·) be a solution of this problem and write Ĉ(·) for the corre-

sponding consumption function. The Euler equation gives

−AĈ−ρe−θt −
d

dt
(Ĉ−ρe−θt) = 0.

This implies Ĉ−ρe−θt = re−At for some constant r. Therefore

Ĉ = C0e
A−θ

ρ
t .

Therefore this modern version has a more upbeat conclusion:

there is an explicit formula for the solution of the problem and

moreover consumption can continue to grow forever to unlimit-

ed levels.

Pontrijagin’s Maximum Principle

The result of Euler, mentioned above, turned out to be very flex-

ible and has led to the creation of the Calculus of Variations.

Many types of optimization problems where the variable which

has to be chosen optimally is a function x(t) of one variable t have

been analyzed with success with variants of this method. How-

ever, around the middle of the 20th century engineers encoun-

tered problems which could not be treated with any variant of this

method. The reason is that constraints of the type ‘ẋ(t) ∈ U for all

t’ where U is some given subset of R, could not be made to fit into

the framework of the Calculus of Variations. Then in 1953 Pontri-

jagin and his coworkers succeeded in overcoming this problem,

by proposing what seemed to be an entirely new method. Con-

sider for example the following problem

J(x(·)) =
∫ t1

t0

f (t, x(t), ẋ(t))dt → min

subject to x(·) ∈ KC[t0 , t1] and ẋ(t) ∈ U ∀t ∈ [t0 , t1]

where x(·) is differentiable.

Here t0, t1 are given real numbers with t0 < t1, f is a contin-

uous function on R
3 and U is a given subset of R. We recall that

KC[t0 , t1] consists of all continuous, piecewise continuous differ-

entiable functions on [t0 , t1], with at most finitely many kinks;

these kinks must be nice in the sense that left- and rightderiva-

tive must exist. The Hamilton function is defined by

H = H(t, x, u, λ0 , p) = pu − λ0 f (t, x, u).

The result is that for each solution x̂(·) of this problem there exists

λ̂0 ∈ [0, ∞) and p̂(·) ∈ KC1[t0 , t1] not both zero such that the

following conditions hold:

˙̂x = Ĥp ,

˙̂p = −Ĥx ,

Ĥ(t) = max
u∈U

H(t, x̂(t), u, p̂(t), λ̂0),

p̂(t0) = p̂(t1) = 0.

Here we use the same conventions to shorten the notation as be-

fore. Just as the result of Euler, this one — called Pontrijagin’s

Maximum Principle (PMP) — turned out to be very flexible. It

has led to the creation of the Optimal Control Theory [12]. Below

we give one of the many applications to mathematical analysis,

science and economics, of one of the variants of PMP.
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Figure 8 Forecast for the development of the price as predicted by the trader

Commodity trading

Let us consider the buying and selling of a commodity by traders

who do not intend to use the commodity themselves. The skill

of a successful trader depends on the ability to make an accurate

forecast for the development of the price in the future. Given a

forecast, it is possible to pose an optimal control problem to de-

termine when the commodity should be bought or sold and when

the trader should be inactive. In practice the operations of buying

and selling will be discrete, but here we use a continuous mod-

el from [13]; this is easier to use and gives the same insight as a

discrete model.

J(x1(·), x2(·), u(·)) = −x1(T) − q(T)x2(T) → min

subject to x1(·), x2(·) ∈ KC1[0, T], u(·) ∈ KC0[0, T],

ẋ1 = qu − sx2 , ẋ2 = −u, x1(0) = X, x2(0) = 0,

u(t) ∈ [−1, 1] for all points of continuity of u(·).

Here,

T = the time period for which the trader predicts the price

x1(t) = the amount of cash which is held at time t

x2(t) = the amount of the commodity held at time t

q(t) = the price of the commodity at time t as predicted by

the trader; in the problem (P) the function q(·) (‘the

forecast’) is considered as given

u(t) = the selling rate at time t; negative values of u

correspond to a buying phase

X = the amount of cash held at time 0 (‘now’).

The goal is to maximize the total value of the assets at time T. If

we apply the appropriate variant of PMP to the problem, then we

get, for each given function q(t), the optimal trading strategy. Let

us consider the forecast from figure 8.

Then the optimal strategy turns out to be ‘governed’ by the

following so-called shadowprice-function p̂(t) = s(t − T) + q(T).

Figure 9 contains the graphs of both the forecasted price q(·) and

the shadowprice p̂(·).

From t = 0 till t = ts (“the switching time”) the price q(t)

is higher than the shadowprice p̂(t) and the trader should sell

as fast as possible, from t = ts till t = T the price q(t) is lower

than p̂(t) and the trader should buy as fast as possible. For other

forecasts q(·) one can also have periods that it is optimal to be

inactive. Furthermore we point out that the shadowprice function

p̂(t) which plays such a crucial role in the optimal strategy ‘is’ the

function p̂(·) occurring in PMP, provided that one chooses λ0 = 1.

Finally we take a critical look at this model. We have not re-

stricted the amount of the commodity held x2 to be nonnegative:

Figure 9 The shadowprice p̂(t) warns the trader to take action before the price reaches its
bottom

we allow short-selling. That is, selling of goods that are not actu-

ally in the trader’s possession. This actually occurs in the example

above. It is only when t > 2ts that the trader actually possesses

any of the commodity. Here two views are possible. Either one

forbids short-selling, by introducing the constraint x2(t) ≥ 0 for

all t. Then it turns out that the optimal profit is halved. Or one al-

lows short-selling: then the model above has a flaw which should

be corrected: there is short-selling, the negative value of x2 im-

plies that the storage charge produces a profit, which is not very

realistic.

Unification in the style of Lagrange

In retrospect one can see PMP as a realization of the ideal of La-

grange, as Tikhomirov has shown (for example in [14]). To clari-

fy this, we now discuss a problem from Newton’s Principia [15]:

“figures may be compared together as to their resistance; and

those may be found which are most apt to continue their motions

in resisting mediums”. Newton proposed a solution which was

however not understood until recently; it has generally been con-

sidered as an example of a mistake by a genius. One of the for-

malizations is the following.

(P) J(u(·)) =
∫ T

0

tdt

1 + u2
→ min

subject to u(·) ∈ KC[0, T],
∫ T

0
u dt = ξ , u ≥ 0.

The relation of problem (P) with Newton’s problem can be de-

scribed as follows. Let û(·) be a solution of (P); take the primi-

tive x̂(·) of û(·) which has x̂(0) = 0. Its graph is a curve in the

t-x-plane. Now we take the surface of revolution of this curve

around the x-axis. This is precisely the shape of the front of the

optimal figure in Newton’s problem. The details of this relation

are given in [14]. The constraint u ≥ 0 (the monotonicity of x(·))

was not made explicit by Newton. We stress once more that pre-

cisely this type of constraint can be dealt with very well by PMP,

but not by the Calculus of Variations. It is natural to interpret La-

grange’s method for this problem as follows. There are constants

λ0 ≥ 0 and λ, not both zero, such that each solution û(·) of (P) is

a solution of the following auxiliary problem

(Q) I(u(·)) =
∫ T

0

tdt

1 + u2
+ λ

[∫ T

0
udt − ξ ]

]
→ min

subject to u ∈ KC[0, T], u ≥ 0.

It is intuitively clear that a piecewise continuous function û(·)
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Figure 10 The optimal shape of spacecraft as proposed by Newton

is a solution of (Q) precisely if for all points t of continuity of

û(·) the nonnegative value of u which minimizes the integrand

gt(u) = λ0
t

1+u2 + λu is u = û(t). In fact it is not difficult to

give a rigorous proof of this claim. Thus the problem has been

reduced to the minimization of differentiable functions gt(u) of

a nonnegative variable u. Clearly for each t the function gt(u) is

minimal either at u = 0 or at a solution of the stationarity equa-

tion d
du gt(u) = 0. Now a straightforward calculation leads to an

explicit determination of the — unique — solution of the problem

(Q). One can verify directly that this is also a solution of (P). The

resulting optimal shape is given in figure 10 (in cross-section). We

observe in particular that it has kinks.

This is precisely the solution which was proposed by Newton.

The method of solution above is essentially the same as the one by

PMP, as one can verify without difficulty. Also in another respect

Newton was ahead of his time here: his solution has been used to

design the optimal shape of spacecraft.

Not only PMP can be seen as a realization of the idea of La-

grange. Tikhomirov and Ioffe have realized — for example in [16]

— the idea of Lagrange for an extensive class of so-called mixed

problems. Here ‘mixed’ means that the structure of all ingredients

of the problem is a mixture of convexity and smoothness. The re-

sult is a unification of almost all the known and unknown necessary

conditions which are used to solve optimization problems.

Let us explain the addition of ‘and unknown’. For certain prob-

lems of interest the unification allows to write down conditions,

although the necessity of these conditions is not known to hold.

Then an analysis of these conditions leads to certain concrete ‘can-

didate solutions’ for our problem. So far this is a completely

heuristic method, the result of which can be viewed perhaps as

‘a solution of the problem for commercial purposes’. However

once one has a concrete candidate it is usually possible to obtain

somehow mathematical certainty that one has indeed a solution

of the problem. We refer to the paper [17] for a number of con-

vincing examples of this strategy.

Unification in the style of Fermat

Finally we sketch the idea of a new, geometric unification of the

necessary conditions, which is in the style of Fermat’s method:

put the derivative equal to zero. We shall begin with two special

cases, smooth problems and convex problems, before we consider

general mixed smooth-convex problems.

Smooth problems

Consider to begin with the simplest type of unconstrained prob-

lem

(P) f (x) → min subject to x ∈ R,

where f is a differentiable function on R. The tangent to the graph

of f at a point x̂ is the graph of an affine function L f . Explicitly

L f (x) = f (x̂) + f ′(x̂)(x − x̂), the linear approximation of f at x̂.

The graphs of f and L f are given in figure 11.

Figure 11 Smooth linearization of a function

The theorem of Fermat states that f ′(x̂) = 0 if x̂ is a solution

of (P). Observe that f ′(x̂) = 0 precisely if the function L f is con-

stant; moreover a constant function is minimal everywhere. This

suggests the following reformulation of the theorem of Fermat:

x̂ is a solution of (P) ⇒ x̂ is a solution of (L).

Here (L) is defined to be the following linearization of the prob-

lem (P) at x̂

(L) L f (x) → min subject to x ∈ R.

This way to view the theorem of Fermat is illustrated in figure 12.

Figure 12 Fermat’s method for smooth problems

As a second example we consider the simplest type of problem

with an equality constraint

(P′) f (x) → min subject to g(x) = 0,

where f and g are differentiable functions on R
2.
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Figure 13 Non-uniqueness of convex linearizations

Let L f (respectively Lg) be the linear approximation of f (respec-

tively g). Consider the following ‘linearization’ of the problem

(P′) at x̂.

(L′) L f (x) → min subject to Lg(x) = 0.

The Lagrange multiplier rule can be reformulated as follows (pro-

vided that the gradient g′(x̂) is nonzero)

x̂ is a solution of (P′) ⇒ x̂ is a solution of (L′).

Let us verify this. One has g(x̂) = 0 as x̂ is feasible for (P′).

The Lagrange multiplier rule states that there exists λ ∈ R with

f ′(x̂) + λg′(x̂) = 0 provided that g′(x̂) 6= 0. For this condi-

tion one has the following equivalent ‘dual’ description: one has

f ′(x̂)(x − x̂) = 0 for all x ∈ R
2 with g′(x̂)(x − x̂) = 0. That is, the

function L f (x) = f (x̂) + f ′(x̂)(x − x̂) is constant on the zero-set

of the function Lg(x) = g′(x̂)(x− x̂). This finishes the verification

of the equivalence of the two formulations.

More generally one can produce — necessary — conditions

for all smooth optimization problems in essentially the same way.

Here problems are called smooth if they are of the following type

f (x) → min subject to g1(x) = . . . = gm(x) = 0,

where f , g1 , . . . , gm are differentiable functions on an open subset

of a normed vectorspace.

Two happy circumstances are responsible for the success of

conditions ‘in the style of Fermat’ for smooth optimization prob-

lems.

1. Possibility. The concept tangent space allows one to define

smooth linearization for functions defined on a subset of a

normed vectorspace.

2. Effectiveness. One can develop a calculus to compute tan-

gent spaces in favorable situations. Indeed the theorem of the

tangent-space of Lyusternik (a version of the implicit function

theorem) reduces the computation of tangent-spaces to differ-

ential calculus.

Convex problems

An optimization problem is called convex if it is of the following

form

(P′′) f (x) → min subject to x ∈ C,

Figure 14 Fermat’s method for convex problems

where C is a convex subset of a vectorspace X and f is a con-

vex function on C. Now we assume that the following regulari-

ty condition holds for some x̂ ∈ C: for each x ∈ C the limit of

t−1[ f (x̂ + t(x − x̂)) − f (x̂)] for t ↓ 0 exists and lies in R. Then

there exists an affine function L f on X with L f (x) ≤ f (x) for all

x ∈ X and L f (x̂) = f (x̂) (‘L f supports f at x̂’). This fact can be

derived from the well-known separation theorem for convex sets.

The function L f is not necessarily unique, as figure 13 shows.

Nevertheless one can consider for each such function L f the

following problem as a linearization of (P′′) at x̂.

(L′′) L f (x) → min

Now we are ready to propose a necessary condition for (P′′) ‘in

Fermat’s style’:

x̂ is a solution of (P′′) ⇒ x̂ is a solution of some (L′′).

This implication — which is of course completely trivial — is il-

lustrated in figure 14.

Figure 15 A convex function viewed as a convex set

In order for this necessary condition to be of practical value, one

needs a calculus to compute ‘linearizations in the convex sense’.

We are now going to show why we can take for this the calculus

for computing duals of convex cones — which is well-developed.

We recall that a subset K of a vectorspace is a convex cone if it is

closed under multiplication with nonnegative scalars and under

addition. Then the dual K∗ of K is the set of linear functions α on

V for which α(k) ≥ 0 for all k ∈ K. This is again a convex cone.
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Figure 16 Lifting up figure 15 to level 1

Now let C, f , x̂ and L f be as above.

We explain the idea for the special case X = R, for the conve-

nience of exposition only. Then the graphs of f and L f lie in the —

horizontal — plane R
2 as is shown in figure 15. We add a vertical

dimension and lift this horizontal plane up vertically to level 1.

The result is given in figure 16.

Then we form the cone K f generated by the lifted up copy of

epi f , the epigraph of f , that is, K f = R
+(epi f × 1). This is a con-

vex cone as f is a convex function. We form the linear subspace

W f of R
3 spanned by the lifted up copy of the graph of L f , that is,

W f = R · (graph L f × 1).

Then W f is a plane in R
3 through the origin which has the con-

vex cone K f on one of its two sides and which contains the point

(x̂, f (x̂), 1) of the convex cone K f . Now consider a nonzero linear

function β on R
3 which has kernel equal to W f . Then either β

or −β lies in the dual of the convex cone K∗
f by the properties of

W f above and the definition of the dual of a convex cone. Thus

we obtain a nonzero element α of K∗
f with α(x̂, f (x̂), 1) = 0. This

element α is determined up to a positive scalar multiple; that is

its ray R
+·α is uniquely determined. Thus we have constructed a

map from the set of linearizations L f of the convex function f at x̂

to the set of rays R
+·α of the dual cone K∗

f with α(x̂, f (x̂), 1) = 0.

It can be shown that this map is a bijection; for this one needs

the regularity condition made above. This finishes the sketch of

the connection between the problem of linearization of the con-

vex function f at x̂ and that of the computation of duals of convex

cones.

Figure 17 A convex linearization of a function viewed as the element of a dual
cone

For convex problems there are, just as for smooth problems, two

happy circumstances which are responsible for the success of con-

ditions ’in the style of Fermat’.

1. Possibility. The concept supporting hyperplane allows one to

define ‘convex linearization’ of functions defined on the subset

of a vectorspace.

2. Effectiveness. One can develop a calculus to compute support-

ing hyperplanes in favorable situations. Indeed the separation

theorem of convex sets reduces the computation of supporting

hyperplanes to the calculus of duals of convex cones in vec-

torspaces.

Mixed smooth-convex problems

Consider the following set-up: X, U, Y are normed vectorspaces,

F is a function on the product X × U × Y which takes values in

the extended real line R̄ = R ∪ {∞} ∪ {−∞} and vectors x̂ ∈

X, û ∈ U with F(x̂, û, 0) ∈ R. To these ingredients we associate

the problem
(P′′′) F(x, u, 0) → min.

A mixed smooth-convex linearization L of F is defined to be an

affine function on X × U × Y such that L(x, û, y) is a smooth lin-

earization of F(x, û, y) at (x̂, 0) and L(x̂, u, y) is a convex lineariza-

tion of F(x̂, u, y) at (û, 0). For such a function L the problem

(L′′′) L(x, u, 0) → min

is called a mixed smooth-convex linearization of (P′′′).

I think that under relatively mild assumptions, among these

‘smoothness in the variables (x, y)’ and ‘convexity in the variables

(u, y)’, the following implication holds:

(x̂, û) is a solution of (P′′′)

⇒ (x̂, û) is a solution for some mixed

smooth-convex linearization (L′′′).

A result of this type is given in [18]. Moreover I think that the

analysis of the condition ‘(x̂, û) is a solution for some mixed

smooth-convex linearization (L′′′)’ is the best practical way of

spotting solutions of mixed smooth-convex optimization prob-

lems. Here the possibility to make a heuristic use of ‘necessary

conditions’ should be stressed again. Thus for each problem of

type (P′′′) above, one can write down the condition ‘(x̂, û) is a

solution for some mixed smooth-convex linearization (L′′′)’. For

this one does not have to pay attention to any assumptions. Then

one can analyze this condition. Any concrete candidate (x̂, û) that

turns up in this analysis can usually be checked for optimality

without difficulty.

Finally we mention that it is not difficult to derive the unifica-

tion in Lagrange’s style and so in particular Pontrijagin’s Maxi-

mum Principle from the unification in Fermat’s style.

How to choose F?

Let us consider the simplest example of a problem of mixed

smooth-convex type.

f (x1 , x2) → min subject to g(x1 , x2) ≤ 0,

with f and g differentiable. Introduce a slack variable u ≥ 0 in

order to replace the inequality constraint g(x) ≤ 0 by the equality

constraint g(x) + u = 0. Then replace the righthandside of this



J. Brinkhuis How to spot an optimum NAW 5/1 nr. 2 juni 2000 149

equality constraint by the parameter y; this gives g(x) + u = y.

Then define

F(x, u, y) = f (x) if g(x) + u = y and u ≥ 0,

F(x, u, y) = ∞ otherwise.

Then the problem to minimize F(x, u, 0) is equivalent to the origi-

nal problem. If one works out the ‘condition’ above for this choice

of F, then one gets the usual KKT-conditions for this problem.

On optimization: from art to craft

“The most fascinating pursuit is to follow the thoughts of a great man.”

A.S. Pushkin

“We must make it our goal to find a method of solution of all problems . . .

by means of a single simple method.” D’Alembert

One of the most accessible popular books on optimization is Sto-

ries about Maxima and Minima by V.M. Tikhomirov [14]. It consists

of two parts. The first part is inspired by the words of Pushkin.

It offers examples of the art of solving special optimization prob-

lems by some of the great mathematicians of the past. The second

part is inspired by the words of D’Alembert. It teaches a craft

which allows anyone who is interested, to solve these and oth-

er optimization problems by one straightforward strategy. The

main issue is here how to obtain necessary conditions for optima.

In the present paper we have given a survey of these conditions

and their unification.

Finally we mention some matters which deserve further inves-

tigation. The necessity of our condition in the style of Fermat is

trivial for the special cases of smooth and convex problems; how-

ever it is surprisingly hard to prove for general mixed problems.

In fact it has only been proved so far under assumptions which

are probably much too strong. In the second place it is of crucial

importance for the success of the strategy to have an efficient cal-

culus for computing duals of convex cones. It seems to me that

there is room for progress here. Finally the proposed strategy us-

ing necessary conditions in the style of Fermat and Lagrange has

clear limits. For example for multidimensional variational prob-

lems no necessary conditions are known of a strength comparable

to that of Pontrijagin’s Maximum Principle for one dimension-

al variational problems. Here something entirely new has to be

found. k
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