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The how and what

A review is given of the most well-known examples of dynamical sys-

tems with chaotic dynamics. After a phenomenological introduction,

a definition of chaos is ‘deduced’. One of the examples concerns the

Hénon-attractor, that has only been recently characterized as the

closure of a coiling curve. It will be made plausible that this char-

acterization also holds in a more realistic example from mechanics.

Also some links between chaos and probability are indicated.

1 Determinism, chaos and chance

Chaos is one of the intriguing features of nonlinear deterministic

dynamics. Dynamical systems in principle model anything that

moves in time. Examples are as various as simple contraptions

of springs and pendula or the whole solar system or the world

economy or even the atmospheric circulation which produces the

weather. In this context, the only important thing is that it is de-

terministic: there is some state space, or phase space, containing all

possible states of the system and an evolution law that prescribes

the whole future when the present state is given. Of course it is

not completely clear that all these examples should be determin-

istic.

Anyway, it turns out that even in extremely simple determin-

istic dynamical systems, i.e., with a low dimensional state space,

the phenomenon of chaos can occur. Apart from the fact that this

gives rise to interesting geometries in the state space, it also leads

to basic unpredictability of the future dynamics.

Setting of the problem

The first entry to the subject matter is phenomenological, we just

study a few examples in low–dimensional phase spaces, or with

‘few degrees of freedom’. The interest is with the long–term, or

asymptotic, dynamical behaviour, i.e., the regime where the initial

and transient phenomena have disappeared.

As we shall see, there is a wide variety of possibilities. In the

simplest cases the system is asymptotically at rest. We shall al-

so encounter asymptotic periodic or multiperiodic behaviour. In

those cases, in the phase space a point or (multi-)periodic attrac-

tor exists, where nearby evolutions converge to. All of this is still

reckoned to be orderly dynamics. A first, rough, definition clas-

sifies all remaining cases to be ‘chaotic’, where the attractors in

phase space usually are called ‘strange’. After a while we shall

arrive at a more sophisticated definition of chaos.

Unpredictable systems elsewhere often are described by prob-

abilistic models. A good example are the dice, which by nature

form a highly chaotic, deterministic system. The description in

these terms is so complicated though, that we usually disguise

our incompetence and ignorance by using statistics.

Outline

We start with a few classical examples, including the Logistic (or

Quadratic) family, the Hénon family, the Baker transformation

and the Tent map family. In these examples time is discrete and

the dynamics mathematically amounts to the iteration of a map.

Next we present two examples with continuous time, gener-

ated by autonomous systems, of ordinary differential equations

(ODE’s). In particular we show the Lorenz en Rossler systems.

After this we arrive at a definition of chaos and at the characteri-

zation of the strange attractor of a 2–dimensional diffeomorphism

like the Henon map.

Figure 1 Graphical explanation of the iteration xn+1 = Φ(xn).
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of chaos

The second part of the paper focuses on periodically driven sys-

tems. We shall describe some of the background physics and con-

sider the Poincarémap of such a system. It seems that the strange

attractors of these maps have the same kind of characterization

as the Hénon map. We conclude by explicitly introducing some

probabilistic aspects by defining an invariant distribution, hint-

ing in the direction of Ergodic Theory. A special case is occu-

pied by the conservative case without friction. Here the chaotic

phenomena are still largely unknown, although some interesting

comments are in order. Also we briefly mention the case of fractal

basin boundaries, where we return to the dice.

2 The Logistic family

The first example is the well–known Logistic or Quadratic fami-

ly, e.g., see [10]. It is a discrete dynamical system, given by the

iterations

(1)xn+1 = µxn(1 − xn),

xn ∈ [0, 1], n = 0, 1, 2, . . . Moreover µ ∈ [0, 4] is a parameter. The

simplest interpretation of (1) is in terms of population dynamics.

In that case an evolution x0 , x1 , x2 , . . . , of this system is interpret-

ed as the (scaled) size of a certain population as a function of the

time n. Let us discuss this in some detail.

The linear growth model

We begin considering the linear growth model

xn+1 = µxn , xn ∈ R,

n = 0, 1, 2, . . . The parameter µ in this model is the constant ratio

between the sizes of successive generations, and can be interpret-

ed as a netto growth rate of the population at hand. It is easily

seen that in terms of the initial ‘population’ x0 we have

x1 = µx0 , x2 = µ2x0 , . . . , xn = µnx0 , . . .

n = 0, 1, 2, . . . , which clearly is an exponential behaviour. Re-

garding the parameter µ we distinguish between the case where

0 < µ < 1, corresponding to exponential decay, and the case

where 1 < µ, which corresponds to exponential growth. There

are not too many circumstances in which this linear model is re-

alistic. The Logistic family can be seen as the simplest nonlinear

modification of it.

Figure 2 Graphical explanation of the linear growth model.

Graphical analysis

As an intermezzo we study the dynamics of more general itera-

tions

xn+1 = Φ(xn),

n = 0, 1, 2, . . . , where Φ : R→ R is a smooth function. In figure 1

we sketched the graph of such a function as well as the graph

of the identity map (i.e., of y = Φ(x) and y = x). It is easy to

describe the iteration–step from xn to xn+1 by use of this: indeed

given xn on the x–axis we read off the next iterate xn+1 on the

y–axis. With help of the diagonal y = x we next reflect the value

xn+1 to the x–axis and we can repeat the process to obtain xn+2 .

In figure 2 this idea has been applied to the linear growth model

for µ > 1. In this case we simply have Φ(x) = µx.
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Overpopulation

Let us now consider the dynamics of the Logistic family itself,

which can be described as

xn+1 = Φµ(xn) with Φµ(x) = µx(1 − x),

the Logistic map. First observe, that for small values of xn the

equation (1) is well–approximated by the linear growth model.

Next however, we observe that in the nonlinear model there

is a maximal size of the population, namely xn = 1. Indeed, if

xn = 1 it follows that xn+1 = 0, and so the next generation is

extinct. This is one of the simplest ways to model the effect of

overpopulation. Of course the maximal size 1 is artificial, but any

other bound by an appropriate scaling may be brought to 1.

As before, we vary the parameter µ and consider the dynam-

ics. To this end we perform the graphical analysis described in

the previous subsection, see figure 3. As in the linear case, for

0 < µ < 1 the population gets extinct, where for larger values of n

we almost are in the case of exponential decay. In a more geo-

metrical language we say that x = 0 is a point, or equilibrium,

attractor. This kind of dynamics is still quite uninteresting from

the view point of population dynamics.

For 1 < µ < 3 we find a point attractor different from x = 0,

indeed it is x = pµ , with

pµ := (µ − 1)/µ.

Observe that for 2 < µ < 3, the equilibrium pµ is approached in

a spiraling mode.

Figure 3 Dynamics of the Logistic family for different values of µ: a. 0 < µ < 1 ,
b. 1 < µ < 3, c. 0 < µ − 3≪ 1.

Then, for 3 < µ none of the two equilibria 0 and pµ is attracting,

so where does the population size xn go as n → ∞? The answer

for 0 < µ − 3 ≪ 1 is given in figure 3c: the system now has a

periode–2 attractor. Intuitively such a situation can be described

as follows. Suppose the generations with even n are smaller than

the ones with odd n. Then each odd generation exhausts the nat-

ural resources so much that the next generation is smaller, which

allows the next generation to be larger again, etc.

For increasing values of µ an interesting scenario arises, which

is described often in literature, see figure 4. We refer to, e.g., [10,

12]. To obtain it, for each value of µ, about 200 iterations are

considered of which only the latter 100 are plotted. In this way

the transient phenomena are ignored and only the asymptotic dy-

namics is observed. The first thing to be seen is that for increas-

ing µ the system doubles its period. So the period–2 attractor is

replaced by a period–4 attractor, then period–8, etc. It has been

shown that this process goes with geometric progression: to be

precise, the corresponding sequence µ1 , µ2 , µ3 , . . . of parameter–

values converges (almost) geometrically to a limit µ∞. Names like

Feigenbaum and Tresser are related to these phenomena, compare

Figure 4 Bifurcation diagram of the Logistic family.

[9, 12]. For the parameter–value µ = µ∞ that limits this progres-

sion there is no longer any periodicity. For such aperiodic dynam-

ics we shall use the adjective chaotic, but below we shall arrive at

a more precise definition.

In the range 3 < µ < 4 many chaotic and periodic regimes can

be distinguished and also many period doubling sequences.

Remarks

− One of the significant features of the present chaos is the

stretching of the x–axis by the Logistic map Φ(x) = µx(1− x),

except very near x = 1/2, for larger values of µ. By stretching

alone the points all would leave the interval [0, 1]. However,

the map also folds the interval over itself. It is this combination

of stretching and folding that we shall see again when meeting

other chaotic systems.

− The above (almost) geometric progression of the sequence µn

can be expressed by saying

lim
n→∞

µn−1 − µn−2

µn − µn−1
= δ,

for a positive constant δ = 4.6692016091029 . . . This constant

δ turns out to be universal in the sense that it also occurs for

similar unimodal maps Φ, again see [9, 12].

− The arguments of this section have the same character as in the

derivation of the Volterra–Lotka systems for population dy-

namics. Their aim is not so much to precisely model the evolu-

tion of a given population, but rather to give as transparant as

possible systems with certain qualitative properties, compare

[11, 13, 24]. In Mathematical Biology, however, often more re-

alistic models are used, with similar qualitative properties as

the Logistic family.

3 The Hénon family

This family of maps was introduced by Hénon in 1976, intend-

ed as a simple (polynomial) example of a planar diffeomorphism

with a strange attractor. Only quite recently the structure of

this family has been understood better, mathematically speaking.

Compare [3, 9–10, 12].
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Just iterating

Let us first describe what is the case. Given is the 2–dimensional

map
Φa,b(x, y) = (1 − ax2 + y, bx),

with a and b real parameters. Iteration

(xn+1 , yn+1) = Φa,b(xn , yn),

n = 0, 1, 2, . . . , then produces 2–dimensional evolutions of the

form
(x0 , y0), (x1 , y1), (x2 , y2), . . .

In figure 5, one iteration has been plotted for parameter values

a = 1.4 and b = 0.3. This is the celebrated Hénon attractor H,

which attracts an open subset of initial points (x0 , y0) in R
2 . The

set H appears to be a fractal, the local geometry of which is the

product of a curve and a Cantor set. Numerical estimates of a suit-

able fractal dimension (limit capacity, box counting dimension)

of H give approximately 1.2. For background see [9], especially

the chapters II and III. For general reference see also [12].

It is interesting to see what happens upon variation of the pa-

rameters (a, b), see figure 6. Indeed, the strange attractor H is

not persistent for small perturbations, since for nearby values of

(a, b) periodic attractors turn up. As we shall argue now, the com-

plexity of the bifurcation diagram in figure 4 also is to be expect-

ed here: windows with periodic attractors, period doubling se-

quences, strange attractors, etc.

Mathematical intermezzo

Let us make this a bit more precise. To begin with, notice that the

following two versions exist of the Logistic family:

xn+1 = µxn(1 − xn) and

xn+1 = 1 − ax2
n .

The former we already know, and the latter can be derived from

this by the affine scaling of x from [0, 1] to [−1, +1] and by

reparametrizing

µ ∈ [0, 4]←→ a ∈ [0, 2] : a =
1

4
µ(µ − 2).

This gives rise to the following observation. Consider the Hénon

family for b = 0 :

Φa,0(x, y) = (1 − ax2 + y, 0).

Notice that this is no longer a diffeomorphism. Clearly the

line y = 0, or the x–axis, is invariant1 and the restriction

Φa,0(x, 0) = (1− ax2 , 0) is nothing but a newly begotten version

of the Logistic family. A natural question now would be which

aspects of the dynamics of the Logistic family are inherited by the

Hénon family for small (nonzero) values of b.

At the level of periodic attractors a lot is known about this, see

[22], also see [8]. Indeed, it turns out that the periodic windows

of the Logistic family as shown in figure 4 can be continued for

small values of b.

Figure 5 The Hénon attractor in the (x, y)–plane, for a = 1.4, b = 0.3.

The chaotic dynamics is a lot harder to continue. To understand

what is going on here, we note that the Hénon map Φa,b has a

saddle fixed point pa,b. Such a point is unstable. Let us consider

the set
Wu(pa,b) = {(x, y) ∈ R

2 | lim
n→∞

Φ
−1
a,b (x, y) = pa,b},

i.e., all points that by backward iteration of Φa,b go to pa,b . Clearly

one has pa,b ∈Wu(pa,b). It can be shown that Wu(pa,b) (locally) is

a smooth curve, called the unstable manifold of pa,b.

Remarks

− Similarly the stable manifold Ws(pa,b) exists, consisting of all

points converging to pa,b by forward iteration of Φa,b . Both

curves in pa,b are tangent to the corresponding eigenspaces of

the derivative map.

− In this particular case the inverse Φ
−1
a,b can be directly comput-

ed as
Φ
−1
a,b (x, y) = (

1

b
y, x +

a

b2
y2 − 1).

One of the features of the Hénon family is its constant Jacobian

determinant: | det DΦa,b| ≡ b, meaning that for |b| < 1 the map

Φa,b contracts area. This property is also called dissipative. From

this fact one easily derives that the attractor Ha,b of Φa,b is con-

tained in the closure Wu(pa,b). All this was already known in the

beginning of the eighties, proven by Tangerman (unpublished).

The difficult part is the converse, namely to show that Ha,b =

Wu(pa,b). In 1991 Benedicks & Carleson [3], also see [12], showed

that this indeed holds true for a subset of the (a, b)–plane of pos-

itive area. The proof again is based on perturbation arguments.

One remaining question is whether the ‘original’ Hénon attractor

H = H1.4,0.3 has this property or not. Looking at figure 5 makes

this very believable. A definite answer, however, may never be

found.

1 In fact, Φa,0 maps R
2 onto the x–axis, and on the x–axis we have 1–dimensional dynamics as before.
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Figure 6 Attractors in the Hénon family for various (a, b), again depicted in the (x, y)–
plane. The left case is a periodic attractor of period 7 and the right case a small scale
strange attractor with 7 components.

4 The Baker transformation

One of the few ways to get entrance into chaos is that of symbolic

dynamics. This can be best explained with help of a toy model

called the Baker transformation. Indeed, this transformation is

given by

(2)xn+1 = 2xn (mod 1),

again with xn ∈ [0, 1), n = 0, 1, 2, . . . Clearly the map Φ in this

example is given by Φ(x) = 2x (mod 1), for a graph see figure 7.

Note that here the interval [0, 1) firstly is stretched by a factor 2

and secondly cut, after which [0, 1) twice covers itself. This re-

minds of a form of dough kneading, which explains the name. In

this form the tranformation is discontinuous, but when 2πx is in-

terpreted as an angle we can see the Baker transformation as the

complex map
z 7→ z2 ,

restricted to the unit circle, in which case it is continuous.

Remark. The projection of this circle dynamics on the real axis

gives rise to the Logistic map with µ = 4, e.g., see [10].

Let us consider an evolution x0 , x1 , x2 , . . . , given by iteration of

the Baker transformation, so with xn+1 = 2xn (mod 1). In binary

expansion the initial point x0 has the form

x0 =
∞

∑
j=1

a j2
− j ,

where a j ∈ {0, 1} for all j = 1, 2, 3, . . . . In the usual notation

x0 = 0.a1a2a3 . . . , the Baker transformation gets simple:

x0 = 0.a1a2a3 . . . ,

x1 = 0.a2a3a4 . . . ,

x2 = 0.a3a4a5 . . . ,

xn = 0.an+1an+2an+3 . . . ,

an operation named (Bernoulli–)shift. Observe that the above has

the following geometric meaning. If an+1 = 0 the n–th iterate xn

is in the left half interval I0 = [0, 1
2 ), while for an+1 = 1 we have

that xn ∈ I1 = [ 1
2 , 1), the right half interval. Conversely the posi-

tioning of the x0 , x1 , x2 , . . . with respect to the intervals I0 and I1

determines2 the binary expansion of the initial point x0 . We now

are in the realm of symbolic dynamics, a powerful tool for under-

standing chaotic dynamics.

One of the first surprising consequences of the above is the follow-

ing. If the initial point x0 is known only with finite precision, this

precision decreases when iterating. After some time all precision

even totally disappears! This is the heart of the unpredictability

aspect of chaos, and it is of importance since in practice one is

always dealing with finite precision.

A second direct consequence is the following. An initial condi-

tion x0 ∈ [0, 1] has a periodic evolution of period N, precisely if

the binary expansion x0 = 0.a1a2a3 · · · aN aN+1 . . . repeates with

period N. We now can formulate

Theorem 1 (Denseness of periodic points). The set of periodic points

of the iterated Baker transformation is dense in [0, 1).

Proof. Let p ∈ [0, 1) be an arbitrary number, with a binary ex-

pansion p = 0.a1a2a3 · · · aN aN+1 . . . . Then consider the repeating

binary expansion q = 0.a1a2a3 · · · aN a1a2a3 . . . aN a1 . . . . Clearly

the point q is periodic with period N, where |p− q| ≤ 2−N . �

All these periodic points are unstable: the system in practice will

behave aperiodic. This can be seen by observing the graph of the

Baker transformation and its iterates, compare figure 7.

Figure 7 Graph y = Φ(x) of the Baker transformation.

Speaking of dense properties, in general a point x0 ∈ [0, 1] is

called eventually periodic for the map Φ, if some finite iterate

Φ
N(x0) is a periodic point under Φ. In the present case, where Φ

is the Baker transformation, the set of points that are eventual-

ly periodic with period 1, i.e., the eventual fixed points, also is

dense in [0, 1]. Indeed, the eventual fixed points are exactly the

finite binary expansions, which evidently fill the interval densely.

The reader is invited to find other dense properties for him– or

herself.

A less intuitive consequence of the binary expansions is the fol-

lowing

Theorem 2 (Existence of a dense orbit). There exists a point x0 ∈ [0, 1)

such that its orbit {x0 , x1 , x2 , . . .} under iteration of the Baker transfor-

mation is dense in [0, 1).

2 For the moment leaving alone ambiguities like 0.01111 . . . = 0.10000 . . . = 1
2 .
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Proof. Consider the binary expansion

x0 = 0. 0 1

00 01 10 11

000 001 010 011 100 101 110 111

. . .

where all possible truncated expansions are listed. By a similar

argument as in the previous proof, this point comes arbitrarily

close to any given point p ∈ [0, 1). �

The last theorem says that the ‘attractor’ [0, 1) of the Baker trans-

formation is connected: it cannot be decomposed in smaller sub-

attractors.

Remarks

− Consider the family of Tent maps

Φa(x) =

{

2ax, 0 ≤ x ≤ 1
2

2a(1 − x), 1
2 ≤ x ≤ 1,

where a is a real parameter. The Tent map Φ1 , i.e., with a = 1

behaves strikingly similarly to the Baker transformation. In

particular it has a strongly related symbolic dynamics. More-

over, Φ1 has the same dynamics as the Logistic map for µ = 4,

i.e., of Φµ(x) = 4x(1− x), see [10].

− In general the Tent maps Φa , as well as the Logistic maps Φµ

can be attacked succesfully with symbolic dynamics. Special

care has to be taken with the orbit of the central point x0 = 1
2 .

Moreover, general symbolic dynamics is defined on Cantor

sets, which is nicely illustrated by considering the Tent map

family for a > 1, in which case the invariant set

∞
⋂

n =0

Φ
−n([0, 1]),

consisting of the initial points, the orbits of which stay inside

[0, 1] for all time, is a Cantor set. Compare [9–10, 12, 18].

5 Mathematical intermezzo: Towards a definition of chaos

Summarizing, in the above we met dynamical systems with dis-

crete time, generated by a map Φ by iteration ~xn+1 = Φ(~xn),

n = 0, 1, 2, . . . Here ~x varies over some finite dimensional state

space. Let ~x0 ,~x1 ,~x2 , . . . be an evolution of this system, then

~x1 = Φ(~x0),

~x2 = Φ(~x1)

= (Φ ◦Φ)(~x0) = Φ
2(~x0)

. . .
The examples we saw are the Logistic family Φµ(x) = µx(1− x),

the Hénon family Φa,b(x, y) = (1 − ax2 + y, bx) and the Baker

transformation Φ(x) = 2x (mod 1).

Until now we discussed chaos in a heuristic manner, saying

that it is aperiodic, or just ‘weird’. Now we shall give a somewhat

more rigid definition of a chaotic attractor, compare [10], although

we shall not go all the way to Bourbaki. First we have to say what

will be understood by an attractor.

Definition 3 (Attractor, [9]). A subset H of the phase space of the system

generated by Φ is called an attractor iff

1. H is invariant, i.e., if ~x0 ∈ H, then also Φ(~x0) ∈ H;

2. There exists a neighhourhood U of H, such that for all initial

states ~x0 ∈ U, for the corresponding evolutions ~x0 ,~x1 ,~x2 , . . . (with

xn = Φ
n(~x0), n = 0, 1, 2, . . .), one has that ~xn → H;

3. In H the iterated map Φ has a dense orbit.

We repeat that the existence of a dense orbit means that H is inde-

composable, or that it is minimal with respect to the former two

properties. We met this property before in the Baker transforma-

tion.

Next consider an evolution ~x0 ,~x1 ,~x2 , . . . , with ~xn+1 = Φ(~xn),

n = 0, 1, 2, . . . , inside the attractor H. For nearby initial points

~y0 ∈ H, we also consider the evolution ~y0 ,~y1 ,~y2 , . . . , with

~yn+1 = Φ(~yn), n = 0, 1, 2, . . .

Definition 4 (Sensitivity). The restriction Φ|H has sensitive dependence

on initial values iff there exists a positive constant δ, such that the fol-

lowing holds. For any initial value ~x0 ∈ H and any (small) positive

number ε, there exists an initial value ~y0 ∈ H, with |~y0 −~x0| < ε, and

there exists a number N ∈ N, such that |~yN −~xN | > δ.

The property of sensitive dependence also holds for the Baker

transformation, it has to do with the stretching that leads to loss

of information in the practical case when working in finite pre-

cision, leading to unpredictability of the evolutions on a longer–

term range. For further discussion of this notion and possible re-

finements, see [9], chapters I and III. Also see [7], chapter VI. For

more background see [18]. Finally we have:

Definition 5 (Chaos). The attractor H of the dynamical system gener-

ated by the map Φ is chaotic iff the restriction Φ|H has sensitive depen-

dence on initial values.

It is mathematically more or less reassuring to have the above con-

ditions available. However, we then carry the burden of proving

that in the above examples these definitions play a significant role.

In the case of the Baker transformation this can be done. (Hint:

try δ = 1
4 .) In the other cases this is not easy at all, and sometimes

only vague statements are proven like ‘for a set of parameter val-

ues of positive measure the system has a chaotic attractor’. See

above.

Remarks

− In the literature many variations exist on the above definitions.

For example, an attractor does not necessarily have to attract a

full neighbourhood, but a set of full (or just positive) measure

will do. Also sometimes it is required that the periodic points

should be dense in the attractor, again see the example of the

Baker transformation.

− One reason is provided by the unwieldy examples, that look

chaotic, but can only be forced to satisfy alternate definitions.

− Another reason is that there is at least one other entrance to

chaotic dynamics, which uses probabilistic or measure theoret-

ical methods. At the end we shall come back to this.
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6 Two examples with continuous time

The scope of the above seems to be somewhat limited, although

we shall see that the case of the Hénon family represents a large

class of systems that occur in applications.

One of the icons of the theory is the Lorenz attractor, see fig-

ure 8. It is generated by the following autonomous system of

ODE’s in R
3 in the same way as before: let the system run and

omit all transient information. An evolution now simply is a so-

lution or integral curve.

ẋ = −σx +σy

ẏ = Rx − y − xz

ż = −Bz + xy,

where σ = 10, B = 8/3 and R = 28. Here and elsewhere we use

the notation ẋ(t) = d
dt x(t). The example was published in 1963 in

a meteorological journal, for details and background, e.g., see [12,

16]. We just mention here that the system has to do with long term

behaviour of the atmospheric circulation and indicates that even

at the level of simplified climate models chaos may occur. Again

chaos is related to unpredictability.

Figure 8 The Lorenz attractor projected on a plane.

This attractor has been a challenge for mathematicians for a long

time, only quite recently it has been shown to be chaotic according

to the definitions, see [23].

The unwieldiness of the Lorenz system was one reason for

Rössler to introduce a simpler system in 1976 with similar prop-

erties as the Lorenz system:

ẋ = −(y + z)

ẏ = x +
1

5
y

ż =
1

5
+ z(x − µ).

For µ = 4.9 the attractor is given in figure 9. In the present case it

is easier to extract mathematical information.

In both cases the attractor locally seems to be the product a surface

and a Cantor set. Numerically estimated fractal dimensions are

between 2 and 3. For background see [9, 12, 16, 21].

7 Hénon everywhere

The examples of dynamical systems we met until now all had a

somewhat artificial character. In this section we introduce a sim-

ple mechanical context, around the swing, in which we shall pro-

duce Hénon–like attractors of 2–dimensional diffeomorphisms.

We aim to illustrate that the theorem of Benedicks and Carleson

regarding strange attractors for such maps,

H = Wu(p),

seems to be quite a universal characterization. Also see [19–20]

for extensions. Here p is an appropriate saddle point and Wu(p)

is its unstable manifold, see above. It has to be added here that the

mathematics of the matter is not so far yet that these illustrations

also can be made precise.

Figure 9 The Rössler attractor projected on a plane.

Mechanical background

As a starting point we take the planar pendulum without fric-

tion, as it occurs in almost all Mechanics textbooks, also see [4–5].

Consider a mathematical pendulum of length ℓ with mass m that

moves in a vertical plane, under the influence of graviation with

acceleration g. Let x be the deviation from the downward vertical

equilibrium position, measured in radians. As before ẋ and ẍ de-

note the derivatives with respect to the time t, in this case called

velocity and acceleration, respectively. The equation of motion

then reads

(3)ẍ = −ω2 sin x,

where ω2 = g/ℓ. This is a direct consequence of Newton’s second

law F = m× ℓẍ, where F = F(x) is the component of the gravi-

tational force in the direction of motion. We note the established

fact that this equation of motion is independent of the mass m,

which was known experimentally already to Galileo.

The above considerations hold in the conservative case without

friction. However, it is easy to introduce some friction or damping

in the equation of motion as follows

(4)ẍ = −ω2 sin x − cẋ,

where c > 0 is a positive damping coefficient.
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Figure 10 Phase portrait of the undamped pendulum.

The phase plane

One tool when dealing with nonlinear systems like the pendulum,

is the phase plane. Indeed, introducing y = ẋ as an independent

variable we consider the Cartesian (x, y)–plane. The equations of

motion (3) and (4) then turn into a system of ODE’s

(5)
ẋ = y

ẏ = −ω2 sin x,

and

(6)
ẋ = y

ẏ = −ω2 sin x − cy,

compare the 3–dimensional systems from the previous section.

These vector fields give rise to integral curves, the projection of

which to the x–axis corresponds to the physical dynamics within

these models. In figures 10 and 11 we depicted the corresponding

phase portraits respectively. In the latter, damped, case almost

all evolutions end in the lower equilibrium point (x, y) = (0, 0),

which is the attractor in that case.

The Poincaré map

In the damped case generally all energy dissipates away and the

pendulum comes to complete rest. Now what happens if we in-

troduce energy to the system, e.g., by also varying the pendulum–

length periodically in time? Just consider the equation of motion

(7)ẍ + cẋ + (ω2 + ε sin(Ωt)) sin x = 0

which leads to the 3–dimensional vector field

(8)

ẋ = y

ẏ = −(ω2 + ε sin(Ωt)) sin x − cy

ṫ = 1,

which is 2π/Ω–periodic in t. Let (x(t), y(t), t) be an integral

curve of the system (8) and consider instants tn = 2πn/Ω,

n = 0, 1, 2, . . . . We call (x(tn), y(tn))∞

n=0 a stroboscopic sequence.

From the theory of ordinary differential equations, e.g., see [11,

13, 24], it follows that there exists a map (x, y) 7→ Φ(x, y) such

that a stroboscopic sequence is formed by iterations under Φ. We

call Φ the stroboscopic map or Poincarémap of the time periodic

vector field (8).

Figure 11 Phase portrait of the damped pendulum.

In figure 12 we depicted the attractor H for a certain value of

c, ω, Ω and ε. In the particular case we are in, a strong reso-

nance is taking place in the sense that ω : Ω ≈ 1 : 2, in which

case (x, y) = (0, 0) is a saddle–point of the Poincarémap Φ. This

means that the downward ‘equilibrium’ of the pendulum has

been destabilized by the resonant excitation. It is easy to guess

now that the H = Wu((0, 0)), compare the Hénon case, although

at the moment it won’t be easy to prove. Locally the geometry al-

so resembles the Hénon case: as before it ‘is’ the product of curve

and Cantor set. For a more extensive discussion, see [4–6, 19–20].

Figure 12 Hénon–like strange attractor in the Poincarémap of a forced pendulum: the
damped case.

Remarks

− The mathematical conjecture behind all this goes much further,

namely that in families of 2–dimensional dissipative diffeo-

morphisms strange attractors are characterized by H = Wu(p),

for a suitable periodic saddle–point p.

− The Poincarémap also has a nice geometric meaning. Indeed,

consider the vector field (8) in the 3–dimensional (x, y, t)–

space. By periodicity in t, the whole ‘block’ of dynamics be-

tween t = 0 and t = 2π/Ω repeats itself periodically.

The Poincarémap now follows the integral curves from the

section t = 0 to t = 2π/Ω, thus defining the smooth planar

map Φ, compare [11, 13, 24].
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Without friction

The undamped case with c = 0 also is interesting. In that case

the system is conservative and the Poincarémap Φ can be shown

to preserve area, see [1, 7]. In figure 13 several evolutions (or or-

bits) have been plotted. Here regular and irregular, or chaotic,

behaviour occur for the same parameter values. However, the

‘chaotic cloud’ here consists of only one orbit.

Its structure is not yet well–understood. The general conjecture

is that the chaotic evolution densely fills a set with positive area

(the so–called chaotic sea) and that the dynamics on this sea is

sufficiently ‘mixing’. This problem was raised in the sixties of the

20-th century, see [2], and to this day remains unsolved. For an

elementary discussion also see [6]. Recently however, in a simpler

case of the so–called area preserving standard map, a result in this

direction was proven [15].

Figure 13 Hénon–like strange attractor in the Poincarémap of a forced pendulum: the un-
damped case.

Remark. In figure 13, due to the 1:2-resonance, the origin (x, y) =

(0, 0) is unstable: it is a saddle fixed point of the map Φ. Its un-

stable manifold approximately forms a figure 8 loop. Inside there

exists a stable period–2 evolution. The motion of the incense con-

tainer in the church of Santiago de Compostela can be explained

in this way. See [5].

8 Random aspects

In this section we indicate some connections of the above with

Probability Theory. Compare [1–2, 12].

The dynamical distribution

Let H be a (strange) attractor of the discrete dynamical system

xn+1 = Φ(xn), with initial state x0 . This leads to the Φ–evolution

x0 , x1 , x2 , . . . For any (reasonable) subset A ⊆ H consider the

probability

P(A) := lim
N→∞

#{n | 0 ≤ n ≤ N & xn ∈ A}

N + 1
,

which is nothing but the relative visiting frequency of the evolu-

tion to A. In many cases P(A) is independent of the initial state x0.

Assuming this independence, we obtain a probability distribution

on H, usually called the dynamical (or physical) distribution. It is

easy to see that the distribution is dynamically invariant, in the

sense that P(Φ−1(A)) = P(A), for (reasonable) subsets A ⊆ H.

This invariant distribution allows an important connection with

Ergodic Theory, a subdiscipline of Probability Theory, see [14, 17].

The remark in section 7 about ‘mixing’ belongs to this theory.

For the Baker transformation the dynamical distribution is just

the uniform distribution on [0, 1], while for the Logistic map with

µ = 4 the density is given by the Bèta–function

1

π
√

x(1 − x)
.

For the Hénon attractor such a simple formula cannot be given,

nevertheless it is worthwile to think in this way. The strange at-

tractor H, as depicted in figure 5 can be seen as the support of the

invariant distribution. The sensitivity means that a small cloud

of initial states is smeared out over the whole attractor H. Again,

more precise statements can be made with help of Ergodic Theory.

In the general chaotic setting one can say that the sensitivity of

definition 4 means that iterates Φ
N(~x0) and Φ

M(~x0) are almost

uncorrelated for large values of N −M. This seems to imply that

for individual evolutions (orbits) only the short term future al-

lows for deterministic predictions and that for the longer term

future statistical methods have to be applied. Also see [21].

Final remarks

Another way to deal with uncertainty is by the so–called frac-

tal basin–boundaries. Suppose a discrete dynamical system

xn+1 = Φ(xn) is given, with initial state x0 . It may occur that the

system has a finite number of point attractors, but that the basins

of attraction have strange boundaries. Indeed, in the case of three

attractors the boundaries may have the following property: as

soon as two of the boundaries meet, also the third is joining in.

In that case, the total boundary certainly is a fractal set. This kind

of subsets of the plane was studied extensively by L.E.J. Brouwer.

An example of this phenomena can be found in [12], where the

computer experiment is presented of a magnetic spherical pendu-

lum that is attracted by three different magnets.

Such a fractal basin boundary often is a strange repellor. A class

of examples can be found when iterating complex analytic maps:

the so–called Julia set belongs to this kind. See, e.g., [9, 12].

With some good will, also the good old die can be seen in this

perspective. Indeed, we can view this system to have six different

point attractors with complicated basin boundaries. As we said

before, in such a case ‘randomness’ seems to be only introduced

for the sake of convenience.
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All this leads to a well–known philosophical question [25], name-

ly whether the latter is not always the case: that randomness is a

convenient short–cut in deterministic dynamics that are just too

complicated to deal with in another way. In this respect one may

think of systems like the atmospheric circulation (producing the

weather). Another example comes from Statistical Physics and

concerns the hard spheres approximation model for a gas, which

has sensitive dependence on initial states.

On the other hand it seems that Quantum Mechanics takes care

of ‘true’ randomness at very small precision. k
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