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on Edition 2017-3 We received solutions from Mohammad Aassila (Strasbourg), Herbert Belt-
man (Amsterdam), Aart Blokhuis (Eindhoven), Bas Edixhoven (Leiden), Alex Heinis (Amster-
dam), Ammar Yasir KiliÇ (Hellevoetsluis), Alexander Lemmens (Leuven), Quinten Lootens 
(Waregem), Hans van Luipen (Zaltbommel), Hendrik Reuvers (Maastricht), Hans Samuels 
Brusse (Den Haag), Toshihiro Shimizu (Kawasaki) and Djurre Tijsma (Zeist). The book to-
kens for problems A, B and C go to Herbert Beltman, Quinten Lootens, respectively René 
Pannekoek.

Problem 2017-3/A 

Let n be a natural number and suppose that , ,A An1 f  are different subsets of { , , }n1 f .
Prove that there is a { , , }k n1 f!  such that \{ }, , \{ }A k A kn1 f  are different.

Solution  Solved by Herbert Beltman, Aart Blokhuis, Ammar Yasir KiliÇ, Alexander Lemmens, 
Hans van Luipen, Hendrik Reuvers, Hans Samuels Brusse, Toshihiro Shimizu en Djurre Tijsma. 
The solutions are all very similar. Below is Toshihiro Shimizu’s solution. The book token 
has to stay at home and goes to Herbert Beltman.
By contradiction. We assume that for any integer , , ,k n1 2 f= , we can select i j!  such 
that \ \A k A ki j=" ", , i.e. A A ki j .= " , or A A kj i .= " , where A B.  means A B,  and A 
and B are disjoint. Construct undirected graph ,G V E= ^ h with , , ,V A A An1 2 f= " ,. Draw an 
edge between ,A Ai j with label k if A A ki j .= " , or A A kj i .= " , (if there are multiple pairs 
,i j, select only one edge). Then, G has n edges. A forest graph has at most n 1-  edges, so 
the graph has a cycle. Say the cycle has edges labeled , , ,k k km1 2 f . Then, from some set A, 
we can get A k1. " , by adding or removing , , ,k k km2 3 f . This is impossible.

Problem 2017-3/B  (proposed by Hans Zantema)

Let , :f g N N"  be strictly increasing functions. Prove that there exists an n N!  such that 
( ( ( ))) ( ( ))f g g n g f n$ .

Solution  Solved by Herbert Beltman, Aart Blokhuis, Alex Heinis, Ammar Yasir KiliÇ, Alexander 
Lemmens, Quinten Lootens, Hans van Luipen, Hendrik Reuvers, Hans Samuels Brusse, 
Toshihiro Shimizu and Djurre Tijsma. All solutions are similar. Here is the solution by 
Quinten Lootens.
By contradiction, assume ( ( ( ))) ( ( ))f g g n g f n<  for all n. Since f is strictly increasing we can say 
that ( )n f n# . Our assumption ( ( ( ))) ( ( ))f g g n g f n<  and ( )n f n#  imply that ( ( )) ( ( ))g g n g f n< . 
Since g is increasing we have that ( ) ( )g n f n< . Let us look at ( ) ( ( ( ))) ( ( ))g n f g g n g f n< <3 , 
so ( ) ( )g n f n<2 . Repeating this for ( ) ( ( ( ))) ( ( ))g n f g g n g f n< <4 , we find ( ) ( )g n f n<3 , 
et cetera. If we keep going we can prove that ( ) ( )g n f n<t  for all t. This is clearly impossible 
so the contradiction has been reached.

Problem 2017-3/C  (proposed by René Pannekoek)

Determine all n N!  such that 2 1n -  divides 3 1n - .

Solution We received solutions from Mohammad Aassila, Aart Blokhuis, Bas Edixhoven, 
Ammar Yasir KiliÇ, Alexander Lemmens and Toshihiro Shimizu. Several people wrote that 
they really liked this problem. That is why this time the book token goes to the contributor 
of the problem. René Pannekoek has also posted a similar problem online:

https://math.stackexchange.com/questions/2337536/for-which-n-does-2n1-divide-10n1

There you can also read what made him come up with this problem. All solutions involve 
quadratic reciprocity. Some solutions are very short and similar to the following solution 
by Aart Blokhuis.

For n 1= , and depending on your definition of N and divisibility, n 0=  the divisibility 
holds trivially, we show that these are the only n. If n 0>  is even, then 2 1n -  is divisible 
by 3, and 3 1n -  clearly not, so assume n 1>  is odd and 2 1 3 1n n;- - . Let p be a prime 
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s factor of 2 1n - , then mod p3 1n = , and n is odd, so the order of mod p3  is odd, and hence 
3 is a quadratic residue mod p (because 3 1( )/p 1 2 =- ). Using quadratic reciprocity we see 
that this means that modp 1 12!= . It follows that 2 1n - , being the product of primes that 
are mod1 12!  is itself mod1 12! , but if n is odd, and at least 3, then 2 1n -  is mod7 12. 
Contradiction.

The following proof by Bas Edixhoven takes a different route and puts the problem in 
perspective. Assume that n 1>  and n is odd. Let N 2 1n|= - . Then N 1=  in /3Z Z, hence 
N is not divisible by 3. Hence 3 is an invertible element of the ring /NZ Z. We will show 
that the order of 3 in the multiplicative group ( / )NZ Z # is even, thereby showing that 
3 1n !  in ( / )NZ Z # (because n is odd), hence that N does not divide 3 1n - . If N is a prime 
number (such primes are called Mersenne primes, there are at this moment (2017) about 
49 examples, see https://en.wikipedia.org/wiki/Mersenneprime), then the reader can check 
that quadratic reciprocity implies that 3 is not a square in /NZ Z, and hence its order in 
( / )NZ Z # is even. The proof of quadratic reciprocity via the field ( )Q Ng  then motivates 
what follows (without the assumption that N is prime).
To show that the order of 3 in the multiplicative group ( / )NZ Z # is even, it suffices to give 
a group morphism ( / ) /N 2Z Z Z Z"#  such that 3 is mapped to 1. We get such a morphism 
via an action of ( / )NZ Z # on the ring [ ]Z Ng  (the subring of C generated by e /

N
i N2|g = r ). 

Indeed, already Gauss showed that the polynomial ( / )a NZ Z! ( )XN N
a| gU = -#%  has co-

efficients in Z and is irreducible over Z, hence [ ] [ ]/( )XZ ZN Ng U= . Therefore, for each 
( / )a NZ Z! # there is an automorphism av  of [ ]Z Ng  such that ( )a N N

av g g= , and the map 
( / ) ( [ ])AutNZ Z Z N" g# , a a7 v  is an morphism of groups (it is an isomorphism but we do 
not use that). We claim that the quadratic ring [ ]NZ -  is a subring of [ ]Z Ng , and we will 
prove it below; for now, assume that this is so. The composition

( / ) ( [ ]) ( [ ])Aut AutN NZ Z Z ZN" "g -#

(with the second map sending v to its restriction on [ ]NZ -  ) is then the desired morphism. 
Let us indeed check that 3 in ( / )NZ Z # is sent to the non-trivial element of ( [ ])Aut NZ - . For 
that, we consider the automorphism 3v  on [ ]/ [ ] [ ]/( )X3Z Z FN N N3g g U= . Let Frob3 denote 
the map z z37  from [ ]/( )XF N3 U  to itself. This is a ring morphism, the 3-Frobenius map. Let 

Ngr  denote the image of Ng  in [ ]/ [ ]3Z ZN Ng g . As ( ) ( )FrobN N N3
3

3v g g g= =r r r , 3v  induces the 
map Frob3 on [ ]/ [ ]3Z ZN Ng g . The inclusion [ ] [ ]NZ Z N1 g-  induces a morphism of rings 

[ ]/ [ ] [ ]/ [ ]N N3 3Z Z Z ZN N" g g- - . We note that [ ]/ [ ] [ ]/( )N N X X N3Z Z F3
2- - = +  

and that X N X 12 2+ = +  in [ ]XF3  is irreducible. Therefore [ ]/ [ ]N N3Z Z- -  is a field and 
the morphism of rings

[ ]/ [ ] [ ]/ [ ]N N3 3Z Z Z ZN N" g g- -

is injective, and therefore the restriction of 3v  to [ ]NZ -  induces the 3-Frobenius endo-
morphism on [ ]/ [ ]N N3Z Z- - , which is non-trivial.
It remains to prove the claim that [ ]NZ -  is a subring of [ ]Z Ng . We write N N N1 2

2= , 
with N1 square free. For every odd prime p we let p p*|=  if p 1=  in /4Z Z and p p*|=-  if 
p 1=-  in /4Z Z. Gauss already showed that for every odd prime p, there is an element 

[ ]g Zp p! g  such that g p*p
2 =  (gp is called a Gauss sum, and the formula is ( )g ap p p

a
af g= /  , 

where a ranges over Fp
# and pf  is the Legendre symbol). As N 11 =-  in /4Z Z, the number 

of primes p dividing N1 with p 1=-  in /4Z Z is odd. Hence | |p N p NN p g* p1
2

1 1
- = =% % , 

and therefore N1-  is a square in [ ]Z Ng , and therefore N-  as well.
Let us end with a few remarks. For initiated readers the proof is very natural and can 
be shortened much: the quadratic characters of ( / )NZ Z # correspond to the quadratic 
subfields of ( )Q Ng ; the discriminant of ( )NQ -  is N1-  and therefore (explicit class field 
theory for Q, or call it Kronecker–Weber) ( )NQ -  is contained in ( )Q N1

g . We made an 
effort to make the proof as short and self-contained as possible.  We could have included 
a proof of g p*p

2 =  as well, but we also liked to include two references to Gauss. There is 
a way around the Gauss sum argument, if one uses from Galois theory that, for every odd 
prime p, ( )Q pg  has a unique quadratic subfield, whose discriminant is divisible only by p 
and therefore equal to ( )pQ * .
I would like to finish by thanking René Pannekoek for the pleasure that thinking about his 
problem has given me.


