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Edition 2006/1
For Session 2006/1 We received submissions from Rik Bos, Thomas Decru, Ruud Jeuris-
sen, Jaap Spies, B. Sury, the Fejéntaláltuka Szeged Problem Solving Group, Peter Vanden-
driessche, and Gerd Verbouwe.

Problem 2006/1-A We are given a lamp and a sufficiently large number of synchronised
time switches that can be turned on or off by the quarter of an hour and have a revolution
time of 24 hours. We are going to mount a finite number of switches on top of each
other, and put the lamp on top of the result. At the beginning, all time switches are
synchronised at 24.00 hours. We define a period to be a time span in which the lamp is
on for at least one quarter of an hour, and is off for at least one quarter of an hour, and
which repeats itself. Which periods, shorter than 4 days, can be constructed?

Solution No solutions were sent in. The solution below is based on that of the proposer
Jurjen Bos.
The smallest unit of time is a quarter of an hour. In 24 hours we consider 96 such units,
and in 4 days we consider 384 units.
With one switch we are able to create periods of length m units, where m divides 96 and
m > 1. So with one switch we can create periods of length 2, 3, 4, 6, 8, 12, 16, 24, 32 and
48 units.
What happens when we combine two switches? Since we are not interested in how long
(and in when) the light burns during one period, we may assume the light only burns
the first unit of the period.
Suppose a set A of switches causes a period of a units, while a set B causes a period of b
units. Assuming that the light burns just 1 unit in each of the periods caused by A and
B, we see that the combination of the sets A and B causes a period of ab units.
Notice that the only prime divisors of 96 are 2 and 3. Any combination of switches
will increase the factor 2 and/or 3 in the length of the period. The periods we find are
therefore:
• 2 switches 9, 18, 36, 64, 72, 128, 144, 192, 256, 288, 384
• 3 switches 27, 54, 108, 216
• 4 switches 81, 162, 324
• 5 switches 243

Problem 2006/1-B Let P = (0, 0), Q = (3, 4). Find all points A = (X, Y) such that
• X and Y are integers,
• the lengths of line segments PA and QA are integers.

Solution This problem was solved by Peter Vandendriessche. The solution below is
based on his solution.
We modify the problem a little bit by introducing a coordinate transformation T (a com-
bination of a translation and point-multiplication by a factor 2):

{
x = 2X − 3

y = 2Y− 4

{
X = x+3

2

Y = y+4
2

Let R = T(P) = (−3,−4), S = T(Q) = (3, 4) and B = T(A). With the new coordinates
the problem is symmetric about (0, 0). Notice that x has to be odd and y has to be even,
in order that (X, Y) will be a lattice point. Since the transformation T consist of a multi-
plication by a factor 2, the distances BR en BS have to be even, and so does the difference.
Let therefore

2d = BR − BS =
√

(x + 3)2 + (y + 4)2 −
√

(x − 3)2 + (y − 4)2 .

After squaring this equation, we have
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√
(x2 + y2 + 25)2 − (6x + 8y)2 .

Dividing by 2 leads to

x2 + y2 + 25 − 2d2 =
√

(x2 + y2 + 25)2 − 4(3x + 4y)2 .

After squaring (again) and dividing by 4 we have

(*)0 = d4 − d2(x2 + y2 + 25) + (3x + 4y)2 .

Notice that x ≡ 1 mod 2 and y ≡ 0 mod 2, whence d ≡ 1 mod 2. Using the triangle
inequality we find that |2d| < 10. Therefore |d| ∈ {1, 3, 5}.
If |d| = 5, (∗) can be reduced to (4x− 3y)2 = 0. Therefore (x, y) = (3λ, 4λ), or in terms
of the original coordinates, (X, Y) = (3µ, 4µ), where µ is integral.
For the case |d| = 3, the equality (∗) can be reduced to 7y2 + 24xy = 144. Substitute
y = 12v. We find v(7v + 2x) = 1. There are only 2 integral solutions: (x, v) = (3, 1)
and (x, v) = (−3,−1). Then (x, y) = (3, 12) and (x, y) = (−3,−12), or in terms of the
original coordinates (X, Y) = (3,−4) and (X, Y) = (0, 8).
Finally, if |d| = 1, then (∗) can be reduced to 8x2 + 24xy + 15y2 = 24. Substitute
y = 4v. We find x2 + 12xv + 30v2 = 3. Now substitute u = x + 6v. We have

(**)u2 − 6v2 = 3.

This equation is a well-known Pell equation, which can be solved using algebraic number
theory. The solutions of (**) are of the form (un , vn) where un and vn both satisfy zn+1 =
10zn − zn−1. Consequently, the solutions (x, y) of (*) are of the form (xn , yn) where xn

and yn also both satisfy zn+1 = 10zn − zn−1. Moreover, the values for n = 0, 1 are
fixed: either (x0 , y0) = (−3, 4) and (x1 , y1) = (−39, 44), or (x0 , y0) = (9,−4) and
(x1 , y1) = (93,−44). For the solutions (X, Y) of the initial problem, this leads to the
recurrences Xn+1 = 10Xn − Xn−1 − 12 and Yn+1 = 10Yn −Yn−1 − 16 with initial values
(X0 , Y0) = (0, 4), (X1 , Y1) = (−18, 24) or (X0 , Y0) = (6, 0), (X1 , Y1) = (48,−20).

Problem 2006/1-C Let n ≥ 1 be an integer and f (x) = anxn + · · ·+ a0 be a polynomial
with real coefficients. Suppose that f satisfies the following condition:

| f (ξ)| ≤ 1 for each ξ ∈ [−1, 1].

Consider the polynomial
g(x) = a0xn + · · · + an ,

the reciprocal polynomial of f . Show that g satisfies

|g(ξ)| ≤ 2n−1 for each ξ ∈ [−1, 1].

Solution This problem has been solved by Peter Vandendriessche, Rik Bos, and the
Fejéntaláltuka Szeged Problem Solving Group. The solution below is based on that of
the proposer.
It is clear, by writing g(x) = xn f (1/x), that we have to prove that |an| ≤ 2n−1 and
| f (ξ)| ≤ 2n−1|ξ |n for all ξ ∈ R with |ξ | > 1. Furthermore we can assume, without loss
of generality, that an > 0.
Before we start proving the desired properties of f , we recall the definition of the Cheby-
shev polynomials as well as some identities that they satisfy. Define recursively

T0(x) = 1, T1(x) = x; Tn+2(x) = 2xTn+1(x) − Tn(x) for n ≥ 0.

The following identities are satisfied by Tn:

Tn(cosα) = cos nα; Tn(cosh t) = cosh nt.

Let n be at least 1. From the first identity we see that |Tn(ξ)| ≤ 1 for all ξ ∈ [−1, 1].
From the second identity and the fact that Tn(−x) = (−1)nTn(x) it is clear that |Tn(ξ)| ≤
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ing coefficient of Tn is equal to 2n−1. So the Tn form an optimal example of polynomials
satisfying the conditions and the conclusion of the problem.
First we will prove the following lemma:

Lemma. Let f be a polynomial with real coefficients satisfying | f (ξ)| ≤ 1 for all ξ ∈ [−1, 1].
Then for each n ≥ 1, the polynomial P(x) = f (x) − Tn(x) has at least n zeroes on [−1, 1],
counted with multiplicity.

Proof. If we put xk = cos
(

(n−k)π
n

)
for k ∈ {0, . . . , n}, then−1 = x0 < x1 < · · · < xn = 1

and Tn(xk) = (−1)n−k. Furthermore d
dx Tn(xk) = 0 for each k 6= 0, n. This means that

f (x + xk) = P(x + xk) + T(x + xk) = P(xk) + T(xk) +
d

dx
P(xk)x + O(x2). (1)

If P(xk) 6= 0 6= P(xk+1) then by the intermediate value theorem, P has a zero on
(xk , xk+1). If P(xk) = 0 with k 6= 0, n, then the zero xk must be of multiplicity m > 1,
because otherwise in view of (1) we can find ξ arbitrarily close to xk with | f (ξ)| > 1.
If we split up these m zeroes into 1 zero for the inverval [xk−1 , xk] and m− 1 zeroes for
[xk , xk+1], then in the end we see that each interval [xk , xk+1] (now k runs from 0 to n− 1)
has at least one zero of P. By the splitting this gives a correct counting of the zeros. �

Let’s now prove that an ≤ 2n−1. Suppose that an > 2n−1. Define P(x) = 2n−1

an
f (x) −

Tn(x). Then deg(P) ≤ n− 1. Because of the lemma, we see that P = 0. Hence f (x) =
an

2n−1 Tn(x), which contradicts the conditions on f .
The only thing left to show is that | f (ξ)| ≤ 2n−1|ξ |n for all ξ ∈ R with |ξ | > 1. So
suppose that there is a ξ violating this property. Then without loss of generality we
may assume that ξ > 1, otherwise replace f (x) by (−1)n f (−x). There are two cases to
distinguish: f (ξ) > 2n−1ξn and f (ξ) < −2n−1ξn.
In the case f (ξ) > 2n−1ξn look at the polynomial P(x) = f (x)− Tn(x). First note that P
is nonzero, otherwise f (x) = Tn(x), which is a contradiction. The lemma implies that P
has at least n zeroes on [−1, 1]. It follows that deg(P) = n and an < 2n−1. We can see that
f (ξ) > 2n−1ξn ≥ Tn(ξ) so P(ξ) > 0. The leading coefficient of P is negative so P must
have a zero on (ξ , ∞). But then P has at least n + 1 zeroes, which is again a contradiction.
In the case f (ξ) < −2n−1ξn the same argument applies with P(x) = − f (x)− Tn(x).

Problem 2006/1-D Let G be a group such that the maps fm , fn : G → G given by
fm(x) = xm and fn(x) = xn are both homomorphisms.
1. Show that G is Abelian if (m, n) is one of the pairs (4,11), (6,17).
2. Show that there are infinitely many pairs (m, n) such that G is Abelian.
3. Show that for every m there are infinitely many n such that G is Abelian.
4. Given a pair (m, n), how are we able to predict whether G is Abelian?

Solution This problem was solved by R. Bos, Peter Vandendriessche, B. Sury, and Jaap
Spies. The solution below is based on that of R. Bos.
Let G be a group, and let fk : G → G, x 7→ xk (k ∈ Z ).
Obviously, when G is Abelian, every fk is a (homo)morphism. Conversely, we shall
prove:

Theorem 1. Suppose m and n satisfy the following: fm and fn are morphisms on a group G
and gcd(m(m − 1), n(n − 1)) = 2. Then G is Abelian. Moreover, for every m and n with
gcd(m(m − 1), n(n − 1)) 6= 2, there exists a non-Abelian group G such that fm and fn are
morphisms on G.
This completely classifies the pairs (m, n) mentioned in the problem. In particular, it
provides an easy answer for all parts of the problem. For instance, given any m (different
from 0,1) and any integer a we can take n = am(m − 1) − 1 and easily check that the
condition of the first part in the theorem is satisfied. Hence for every m there are infinitely
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To prove the theorem, let us first introduce the following notation. Gn = =( fn) is the
image of G under fn , C(G) is the center of G (the set of group elements h for which
gh = hg, for all g ∈ G), M = M(G) = {n ∈ Z | fn is a morphism on G}, and A = A(G) =
{n ∈ Z | fn is a antimorphism on G} (that is, fn(xy) = fn(y) fn(x)).

Lemma 1. If G is a group and Gn, C(G), M and A are as defined above, the following state-
ments hold for all n, k ∈ Z .
i. n ∈ M ⇔ −n ∈ A,
ii. n, kn ∈ M ⇔ n, n− kn ∈ M,
iii. n ∈ M ⇔ 1− n ∈ M,
iv. n,−n ∈ M ⇔ n ∈ M ∧ Gn is abelian ⇐⇒ nZ ⊂ M,
v. n,−n ∈ M ⇒ Gn ⊆ C(G),
vi. If k, n ∈ M, then k× n ∈ M.

Proof. (i) (xy)n = xn yn ⇔ (xy)−n = y−nx−n,
(ii) It suffices to prove ‘⇒’. To do so, first note that for every k we have (uv)k = u(vu)k−1v
(this also holds for negative k). Since kn, n ∈ M we see that

xkn ykn = ((xy)n)k = (xn yn)k = xn(ynxn)k−1 yn = xn((yx)n)k−1 yn ,

hence xkn−n ykn−n = (yx)kn−n, from which it follows that kn− n ∈ A, and n− kn ∈ M.
(iii) Apply (ii) to the pair (1, n)
(iv) Suppose n and −n ∈ M. According to (i), n ∈ M ∩ A, hence xn yn = (xy)n = ynxn,
which implies that Gn is an abelian subgroup of G. As n ∈ M and Gn is abelian, we see
that (xy)nt = (xn yn)t = xnt ynt since xn and yn commute. The last implication is trivial.
(v) We already know from (iv) that Gn is abelian, so xynx−1 = (xyx−1)n = xn ynx−n = yn

(vi) Suppose k, m ∈ M, then (xy)km = (xk yk)m = xkm ykm. �

Corollary 1. G is abelian ⇔ −1 ∈ M ⇔ 2 ∈ M.

Proof. Since 1 ∈ M, Lemma 1 (iv) and (iii) show that G is abelian iff −1 ∈ M, iff 2 ∈ M.�

Lemma 2.
i. Suppose mZ ⊆ M and n ∈ M, then n + mZ ⊆ M.
ii. Suppose mZ , nZ ⊆ M and k = gcd(m, n), then kZ ⊆ M.

Proof. (i) If k = am + n, then since am and n belong to M we have (xy)k = (xy)am(xy)n =
xam yamxn yn. Moreover Gm ⊆ C(G) (Lemma 1 (v)), so yam and xn commute, hence
xam yamxn yn = xamxn yam yn = xk yk.
(ii) From (i) we see that mZ + nZ ⊆ M. Since kZ = mZ + nZ we are done. �

Lemma 3. Suppose n ∈ M. If k = n(n− 1), then k,−k ∈ M.

Proof. Apply Lemma 1(iii) and (vi) a number of times: from n ∈ M we see that 1− n ∈ M,
so−k = n(1− n) ∈ M, but also n2 ∈ M, therefore (Lemma 1 (iii)) 1− n2 ∈ M. Since both
1− n ∈ M, and 1− n2 ∈ M and 1− n|1− n2 Lemma 1 (ii) shows that 1− n− (1− n2) =
k ∈ M. �

Corollary 2. Suppose n ∈ M. Then n(n− 1)Z ⊆ M.

Proof. Apply Lemma 3 and Lemma 1 (iv). �

Proposition 1. Suppose m and n both belong to M. Let r = m(m− 1) and s = n(n− 1). If
gcd(r, s) = 2, then G is abelian.

Proof. Corollary 2 implies that rZ , sZ ⊆ M and Lemma 2 (ii) shows that 2Z ⊆ M. Hence
G is abelian by Corollary 1. �
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group G such that m and n both belong to M.

Proof. Note that r and s have a common factor pi where p is prime and i > 0 (and i > 1 if
p = 2). Then pi divides r = m(m− 1) hence pi divides m or m− 1. Suppose pi divides m
and similarly that pi divides n. We shall define a finite non-abelian group G = G(p) with
p3 elements in such a way that when p is odd we have xp = 1 for every x ∈ G, and when
p = 2, x4 = 1 for every x ∈ G. This shows that in all cases xm = 1 and xn = 1 for every
x ∈ G. In particular m and n belong to M. The same conclusions hold if for instance pi

divides m− 1, since then xm−1 = 1, hence xm = x, which again shows that m ∈ M. �

So let’s proceed to the construction of the group G = G(p). This will be a subgroup of the
general linear group GL3(F p) of degree 3 over the finite field with p elements consisting
of the matrices

 1 x z
0 1 y
0 0 1


but more easily represented as the set of all elements (x, y, z) ∈ F 3

p with (x, y, z) ×
(x′ , y′ , z′) = (x + x′ , y + y′ , z + z′ + xy′). It is easily verified that this defines a non–
abelian group with unit (0, 0, 0) and (x, y, z)n = (nx, ny, nz + 1

2 n(n− 1)xy). In particular
(x, y, z)p = (0, 0, 0) for odd p and (x, y, z)4 = (0, 0, 0) for the case p = 2 as was required.

Problem 2006/2-* Even though the problem was place in NAW 2006/2, we have already
received several solutions and have decided to close the problem for submissions.

Prove or disprove that if
(2n+1

n
)
≡ 1 mod n2 + n + 1 where n2 + n + 1 is a prime, then

n = 8.

Solution This problem was solved by Thomas Decru, Ruud Jeurissen, and Gerd Ver-
bouwe. All of them had the following solution.
Choosing n = 24, we find that n2 + n + 1 is a prime and

(2n+1
n

)
≡ 1 mod n2 + n + 1.

Thus the statement is refuted. Gerd Verbouwe showed that this is the only example for
n < 309 other than n = 8.

Remark Hennie ter Morsche noticed that the solution of problem 2005/3-A is more
general. Since f (x) + 1 = f (x− 1) we find that f is the sum of −x and the solutions of
g(x) = g(x− 1). But for g we can choose an arbitrary continuous function with period 1.


